Exploratory Modeling of Human-natural Systems (EM) focuses on the development of integrative models of different complexity to better understand complex feedbacks in human-natural systems.
Over the next decade, IIASA research will address itself to transformational changes towards sustainable social-economic-environmental systems. To underpin this research with methodological advances, the Exploratory Modeling of Human-natural Systems Research Group (EM) focuses on three modeling areas:
- Socioeconomic complexity: Micro-level detailed models that account for socioeconomic complexity, for instance, models with explicit representation of individual behaviors and their interactions that allow studying distributional impacts at different spatial and temporal scales; and models that realistically represent financial transactions, trade flows, and supply chains linked to biophysical sub-models.
- Integrative Earth systems models: Intermediate complexity models of Earth systems; evolutionary dynamics of Earth’s ecosystems; and exploratory modeling of linkages between socioeconomic and Earth systems.
- Macro-level systems models: Stylized models to address a multitude of challenges and problems related to the transformation to sustainability.
These models are complemented and supported by the area of:
- Model processing and analysis: Multiple equilibria, regime shifts, tipping points, model sensitivity, robust decision making, optimal responses, model validation, distributed modeling and decision making, tradeoffs, and adaptive dynamics.
EM deploys a flexible multi-model approach that involves stylized models, intermediate-complexity models, and micro-level detailed simulators. To account for socioeconomic complexity, EM exploits the digital revolution and makes use of the progress in computing capabilities to develop micro-level detailed economic simulators, such as agent-based models that allow studying the economy out of equilibrium, account for heterogeneous agents, and relaxes the assumption of rational expectations.
Intermediate complexity models of Earth systems enable investigating these systems on long timescales or at reduced computational cost and make the inclusion of previously unincorporated earth-systems and feedback effects feasible. Furthermore, EM contributes to the development of methods and models for eco-evolutionary dynamics, in particular the theory of adaptive dynamics and more detailed eco-genetic models to address biodiversity in Earth’s ecosystems.
Stylized models of different processes are developed and used for hypothesis testing and to explore the richness of systems dynamics including, non-linearities, tipping points, etc. Model processing and analysis addresses itself to methods and approaches from the theory of dynamic systems, adaptive dynamics, evolutionary game theory, optimal control theory, stochastic optimization, mathematical statistics, model linkage, and reinforcement learning, among other areas.
Projects
Staff
News

27 November 2023
A credible path for Brazil to reach net zero by 2050 depends on nature-based solutions

22 November 2023
Mind the gap: caution needed when assessing land emissions in the COP28 Global Stocktake

15 November 2023
IIASA researchers again ranked among the world's most cited
Events
15 November 2022 Pisa, Italy
ASA-EM researcher participated in the Agent-Based Modelling for Policy (ABM4Policy) workshop
17 June 2022 Dallas, Texas
ASA-EM researcher participated in the 28th International Conference on Computing in Economics and Finance
19 August 2021 Virtual event
Third workshop of the Foresight Exercise “Emerging Trade Routes between Europe and Asia”
Focus
11 November 2023
Pursuing the urban utopia

26 June 2023
Advancing systems analysis for informed and agile decision making

Publications
Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Bakker, D.C.E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I.T., Peters, G.P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Anthoni, P., Barbero, L., Bates, N.R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I.B.M., Cadule, P., Chamberlain, M.A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L.P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R.A., Feng, L., Ford, D.J., Gasser, T. , Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Jacobson, A.R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R.F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J.I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P.C., McKinley, G.A., Meyer, G., Morgan, E.J., Munro, D.R., Nakaoka, S.-I., Niwa, Y., O'Brien, K.M., Olsen, A., Omar, A.M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C.M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T.M., Schwinger, J., Séférian, R., Smallman, T.L., Smith, S.M., Sospedra-Alfonso, R., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tans, P.P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G.R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., & Zheng, B. (2023). Global Carbon Budget 2023. Earth System Science Data 15 (12) 5301-5369. 10.5194/essd-15-5301-2023. Fierro, L., Giri, F., & Russo, A. (2023). Inequality-constrained monetary policy in a financialized economy. Journal of Economic Behavior & Organization 216 366-385. 10.1016/j.jebo.2023.10.031. Gidden, M. , Gasser, T. , Grassi, G., Forsell, N., Janssens, I., Lamb, W., Minx, J., Nicholls, Z. , Steinhauser, J. , & Riahi, K. (2023). Aligning climate scenarios to emissions inventories shifts global benchmarks. Nature 10.1038/s41586-023-06724-y. (In Press) Sanchez-Romero, M., Schuster, P., & Fürnkranz-Prskawetz, A. (2023). Redistributive effects of pension reforms: who are the winners and losers? Journal of Pension Economics and Finance 1-27. 10.1017/S147474722300015X. (In Press) Caulkins, J.P., Grass, D., Feichtinger, G., Hartl, R.F., Kort, P.M., Kuhn, M., Fürnkranz-Prskawetz, A., Sanchez-Romero, M., Seidl, A., & Wrzaczek, S. (2023). The hammer and the jab: Are COVID-19 lockdowns and vaccinations complements or substitutes? European Journal of Operational Research 311 (1) 233-250. 10.1016/j.ejor.2023.04.033.