
Korea (Republic of)
The National Research Foundation of Korea (NRF) is the National Member Organization (NMO) representing Korean membership of IIASA as well as funding IIASA’s annual membership fee.
Main areas of collaborations:

Identifying measures to reduce air pollutants and greenhouse gas emissions

Research to support green growth in Korea

Improving the early warning of forest fires and the ecosystem value of forests in Korea

Studying the vulnerabilities and sources of resilience of the Korean economy and society

Advancing energy and integrated assessment modeling in Korea
Analyzing global water challenges

IIASA Connect
Are you a member of our Korean regional community? IIASA Connect is our exclusive platform bringing this network together. Join today!
Focus
04 December 2022
Celebrating 50 years of global collaboration

07 November 2022
Promising climate progress

29 November 2021
An analysis of forest management in the Republic of Korea

Publications
Heo, N., Chang, H.-C., & Abel, G. (2023). Investigating the distribution of university alumni populations within South Korea and Taiwan based on data from the LinkedIn advertising platform. Cities 137 e104315. 10.1016/j.cities.2023.104315.
Jo, H.-W., Krasovskiy, A. , Hong, M., Corning, S., Kim, W., Kraxner, F., & Lee, W.-K. (2023). Modeling Historical and Future Forest Fires in South Korea: The FLAM Optimization Approach. Remote Sensing 15 (5) e1446. 10.3390/rs15051446.
Chong, H., Lee, S., Cho, Y., Kim, J., Koo, J.-H., Pyo Kim, Y., Kim, Y. , Woo, J.-H., & Hyun Ahn, D. (2023). Assessment of air quality in North Korea from satellite observations. Environment International 171 e107708. 10.1016/j.envint.2022.107708.
Kumar, N., Johnson, J., Yarwood, G., Woo, J.-H., Kim, Y. , Park, R.J., Jeong, J.I., Kang, S., Chun, S., & Knipping, E. (2022). Contributions of domestic sources to PM2.5 in South Korea. Atmospheric Environment 287 e119273. 10.1016/j.atmosenv.2022.119273.
Jo, H.-W. (2022). Optimization of the IIASA’s FLAM model to represent forest fires in South Korea. IIASA YSSP Report. Laxenburg, Austria: IIASA
Cha, S., Jo, H.-W., Kim, M., Song, C., Lee, H., Park, E., Lim, J., Shchepashchenko, D. , Shvidenko, A., & Lee, W.-K. (2022). Application of deep learning algorithm for estimating stand volume in South Korea. Journal of Applied Remote Sensing 16 (02) e024503. 10.1117/1.JRS.16.024503.