Global water scarcity, a result of both quantity and quality change, challenges the achievement of the Sustainable Development Goals. An international team of researchers developed a novel modeling approach to identify cost-effective combinations of water management, promising a substantial reduction in future water scarcity.  

More than half of the world’s population lives in areas where water is limited and/or too polluted. This poses a challenge to the balance between water supply and demand, and causes economic risk for sectors that use water, such as energy, agriculture, households, and industry. In addition, water pollution, such as elevated nitrogen levels, can lead to severe health issues.

The digital transformation of the water sector is crucial for resource management and sustainability. Smart technologies like remote sensors, smart irrigation, and digital twins enable real-time monitoring and efficient water use. However, funding gaps remain, with the water sector receiving less than 1% of climate-tech investments, according to the World Economic Forum.

“Our challenge lies in effectively mitigating water scarcity, ensuring sufficient water of good quality to fulfill human, environmental, social, and economic demands, and support sustainable development,” notes Taher Kahil, Water Security Research Group Leader in the IIASA Biodiversity and Natural Resources Program. “Our study introduces a new modeling method that combines a nutrient model with a cost-saving procedure, considering the effects of biogeochemistry, climate change, and human activities on land in a detailed and specific way.”

The study, published in Nature Communications, highlights that current research on water scarcity often focuses on water quantity, overlooking water quality.

“Investing in reducing water pollution offers a cost-effective strategy to alleviate future water scarcity. We looked at this issue within the context of the Pearl River Basin in China, an area highly stressed by water scarcity and pollution, considering different socioeconomic and climate change scenarios,” explains Maryna Strokal, one of the study corresponding authors and Associate Professor at Wageningen University & Research. “We looked at water quality management options such as reducing chemical fertilizers use and treating wastewater, as well as water quantity options like water storage and water-saving techniques,” says Strokal. 

Results show that future water scarcity in 2050 is expected to increase by a factor of four in most parts of the Pearl River Basin under a scenario with high economic development and global warming. The researchers demonstrate that implementing water quality management measures could halve future water scarcity in the Pearl River Basin.

“Water scarcity is one of the major environmental problems in the world. Our analysis can serve as a blueprint for assessing water scarcity in other heavily water stressed and polluted river basins, guiding the development of cost-effective strategies to mitigate water scarcity in alignment with the Sustainable Development Goals,” concludes Kahil.

Reference
Baccour, S., Goelema, G., Kahil, T., Albiac, J., van Vliet, M., Zhu, X., Strokal, M. (2024) Water quality management could cost-effectively halve future water scarcity: a case study in the Pearl River Basin Nature Communications DOI: 10.1038/s41467-024-49929-z

News

Agricultural landscape, biodiversity

28 April 2025

Balancing nature restoration and land use: a path to sustainable growth in the EU

Can nature restoration and economic productivity go hand in hand? A new study finds that the EU’s ambitious Nature Restoration Regulation (NRR) is essential to achieving biodiversity conservation and climate mitigation targets and that it could be implemented without compromising the supply of agricultural and forest products.
Group of refugees outlined against the setting sun.

17 March 2025

Addressing the needs of vulnerable populations unable to move away from climate risk areas

People in informal settlements, urban deprived areas, refugee camps, prisons, and war zones can be particularly vulnerable to climate threats and natural hazards. A new study, led by IIASA researchers, explores how policymakers can ease their burden.
Rethinking electricity demand

06 February 2025

Rethinking energy demand can foster sustainable development and reduce emissions from buildings and transport

In a new study, IIASA scientists show that a mix of policy measures, including both technological solutions and behavioral changes, can significantly reduce greenhouse gas (GHG) emissions from energy use in buildings and transport.