Current severe heatwaves that will likely increase in severity and frequency in the future are driving a rise in the use of air conditioners, threatening the environment with their high energy consumption and refrigerants with high warming potential. A new study finds that switching to propane as a refrigerant could lessen the global temperature increase from space cooling.

We spend enormous amounts of energy on fighting off the heat in the summer, or throughout the whole year at lower latitudes—about one-tenth of the total worldwide electricity supply. If current temperature trends continue, the energy demands of space-coolers will more than triple by 2050. Apart from the rise in energy consumption, space-coolers also threaten the environment in different ways: by using halogenated refrigerants with high global warming potential. 

Split-air conditioners (Split ACs) that use an indoor and an outdoor air unit connected by pipes are the most common appliances used for space-cooling. They mostly utilize HCFC-22 and HFC-410 as refrigerants, both of them characterized by a very high global warming potential score, up to 2,256—meaning that they trap up to 2,256 times more heat than carbon dioxide over 100 years. Urged by the Kigali Amendment to the Montreal Protocol, many manufacturers are looking for alternative refrigerants with lower global warming potential scores, such as HFC-32. However, with a global warming potential score of 771, HFC-32 still poses a significant climate hazard. 

A study led by IIASA researcher Pallav Purohit in collaboration with researchers from the United Nations Environment Programme and the University of Leeds, showed that by switching to propane, an alternative low (<1) global warming potential refrigerant for space cooling, we could avoid a 0.09°C increase in global temperature by the end of the century, thereby making a significant contribution towards keeping the global temperature rise below 1.5 °C. 

In the study published in Proceedings of the National Academy of Sciences of the United States of America (PNAS), researchers used the IIASA Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model to compare the baseline halogenated refrigerant emission scenarios with scenarios of switching to HFC-32 or propane. While the switch to HFC-32 also lessened the global temperature increase (0.03°C by the end of the century), propane proved to be the superior solution in terms of sustainability.

“Propane exhibits significant environmental advantages through good energy performance and a global warming potential of less than 1. In split-ACs up to 7 kW, propane can be classified as a technically valid alternative to HFC-driven split-ACs,” says Purohit.

Energy-efficient split-ACs using propane are already available commercially in the Chinese and Indian markets. Despite performing similarly to split-ACs using HFC-32, and even better than the currently widespread appliances using HFC-410A and HCFC-22, some national regulations prohibit their use, primarily due to standards and codes restricting the use of refrigerants with higher flammability, hindering their wider adoption. 

“To achieve the EU’s ambitious 2050 climate neutrality targets, early and aggressive action is needed. In the short term, converting new air-conditioning systems to more environmentally-friendly refrigerants can reduce their climate impact significantly, underlining the urgency of updating standards for policymakers,” concludes Purohit.

Reference

Purohit, P., Höglund-Isaksson, L., Borgford-Parnell, N., Klimont, Z., Smith, C.J. (2022). The key role of propane in a sustainable cooling sector. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 119 (34) e2206131119. DOI: 10.1073/pnas.2206131119. [https://pure.iiasa.ac.at/18153]

News

Mountain spring water flowing out of a rock

22 September 2022

An integrated modeling framework to assess surface and groundwater resources

Against the backdrop of climate change and rising water demand, tools for adequately modeling water availability are much needed. In a new study, researchers applied a large-scale model linking surface water to groundwater, which can be used for estimating water resources at a high spatial resolution.
Flag showing map of Africa with highlighted countries and IIASA logo surrounded by relevant country flags

15 September 2022

IIASA welcomes its first regional member organization

IIASA has increased its membership footprint through its newest member, the Sub-Saharan Africa Regional Member Organization, as part of a regional approach to participation in IIASA research and capacity building activities.
Field with bioenergy crops in Brandenburg, Germany

07 September 2022

Over-reliance on biomass-based carbon removal technologies could increase climate and food security risks

An international team of researchers highlighted the inherent risk of relying too much on carbon removal technologies to limit climate change in a new study just published in Nature.