

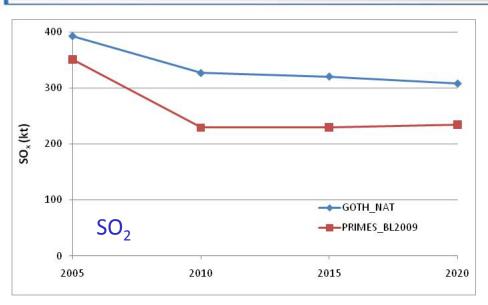
Analysis of the attainability of ambition targets based on national data

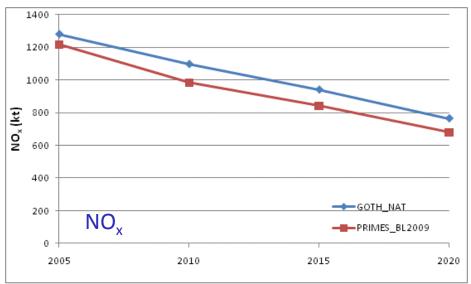
ITALY COMMENTS

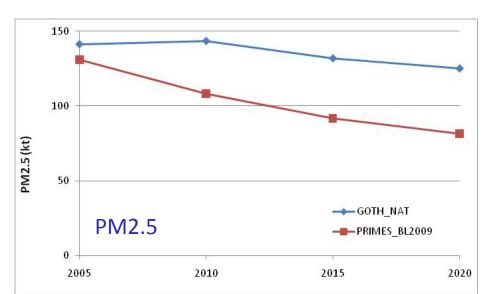
D'Elia Ilaria

INDEX

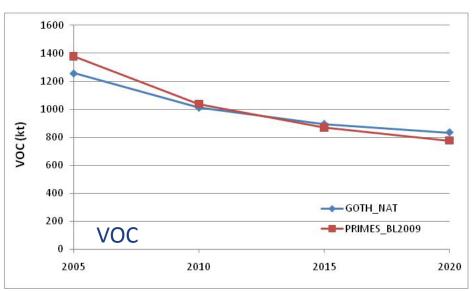
- 1. Comparison between emission scenarios based on PRIMES and on national data
- 2. Reasons of discrepancies: the ENERGY SCENARIO ANALYSIS
- 3. Consequences on emissions and cost analysis
- 4. Conclusions

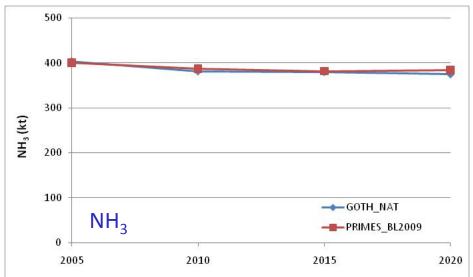





Comparison between GOTH_NAT_baseline_rev1 and GOTH_PRIMES_BL2009_baseline_rev1 emission scenario

MINISTERO DELL'AMBIENTE


Baseline emission scenarios based on PRIMES for SO₂, NO_x and PM2.5


UNDERESTIMATE baseline emission scenario with national data

Comparison between GOTH_NAT_baseline_rev1 and GOTH_PRIMES_BL2009_baseline_rev1 emission scenario

VOC and NH₃ total emissions in both baseline scenarios are similar

Comparison between GOTH_NAT and GOTH_PRIMES_BL2009 emission scenario

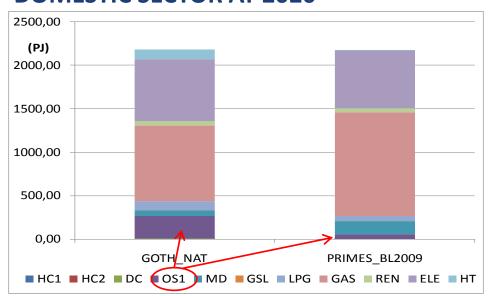
... looking at 2020

YEAR 2020	GOTH_NAT	GOTH_PRIMESBL2009						
	Baseline	Baseline	LOW	Low*	Mid	High*	HIGH	MTFR
SO2 (kt)	308	234	234	234	234	160	171	117
NOx (kt)	763	679	644	644	617	603	561	548
PM2.5 (kt)	125	81	77	77	75	70	71	61
NH3 (kt)	375	384	346	298	286	252	269	224
VOC(kt)	833	777	757	758	748	737	710	622

Discrepancies in the baseline emission scenarios lead to a different emission starting point at 2020 with important consequences in the consequent emission values of the 5 ambition level scenarios

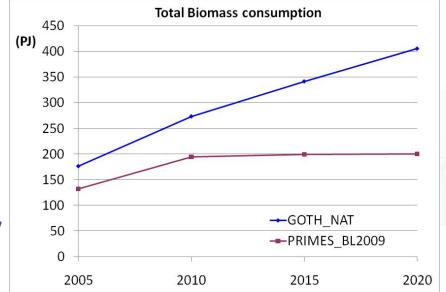
INDEX

- 1. Comparison between emission scenarios based on PRIMES and on national data
- 2. Reasons of discrepancies: the ENERGY SCENARIO ANALYSIS
- 3. Consequences on emissions and cost analysis
- 4. Conclusions



Reasons for discrepancies: the ENERGY SCENARIO ANALYSIS by sector

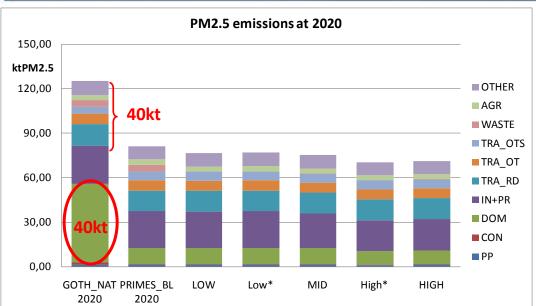
DOMESTIC SECTOR AT 2020



- -TOTAL domestic fuel consumption is the same in both energy scenarios;
- fuel type contribution is completely different;
- in the national projections, biomass consumption in the domestic sector is almost 5 times the biomass consumption in PRIMES (a difference of 200 PJ circa)

- TOTAL biomass estimation in PRIMES NOT RELIABLE because only marketed biomass is considered and it is kept constant from 2010 on - TOTAL NATIONAL BIOMASS at 2020 double than PRIMES

HUGE CONSEQUENCES especially on PM2.5 and VOC emissions

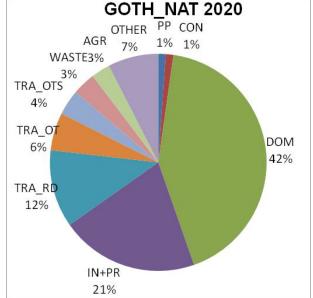


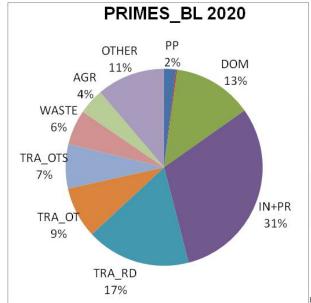
MINISTERO DELL'AMBIENTE

Differences in PM2.5 at 2020

The underestimation of biomass consumption in the DOM sector in PRIMES energy scenario leads to a difference of PM2.5 emissions in the DOM sector of 40 kt circa

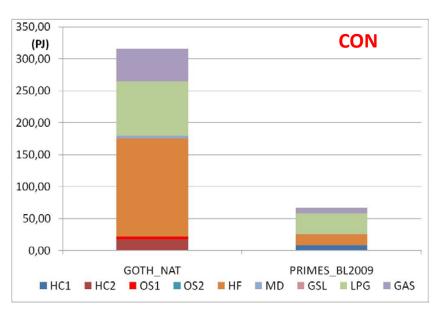
The difference of TOTAL PM2.5 emissions is entirely ascribable to the DOM sector

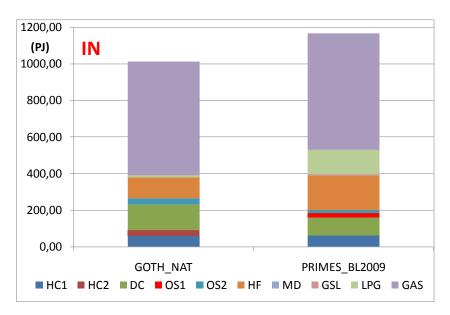

In GOTH_NAT scenario DOM sector is the main PM2.5 emission sector (41% vs 13% in PRIMES) while in PRIMES is IN+PR



Influences on cost analysis:

- MEASURES in DOM only from High*
- MEASURES IN WASTE_AGR and PR





Reasons for discrepancies: the ENERGY SCENARIO ANALYSIS

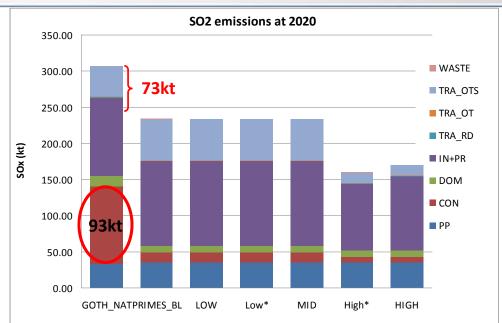
CONVERSION and INDUSTRIAL SECTOR AT 2020

CONVERSION SECTOR at 2020

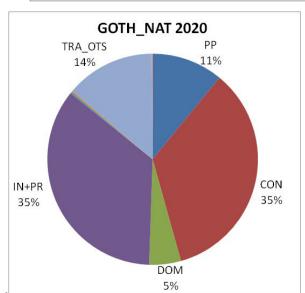
PRIMES energy scenario respect to the GOTH_NAT scenario:

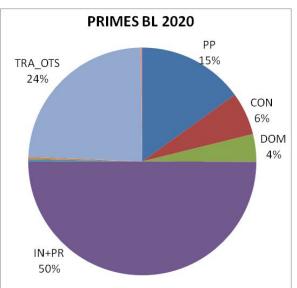
- HF extremely low (-140 PJ);
- No carbon consumption
- underestimation of LPG and GAS (-52 PJ and 42PJ respectively)
- probably fuel compensation with industrial sector

PRIMES also largely overestimates the non-energy use of heavy fuel oil.



Differences in SO2 at 2020




The PRIMES underestimation of heavy fuel consumption in the CON sector leads to a difference of SO₂ emissions in the CON sector of 93 kt and a TOTAL DIFFERENCE of 73 kt

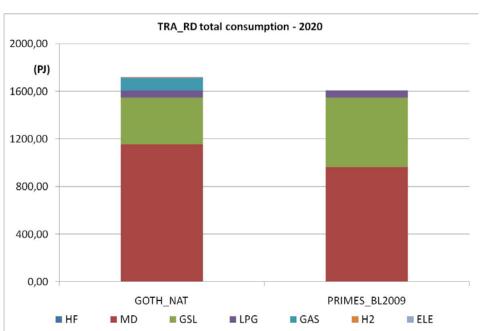
In PRIMES the most polluting sector is the industrial sector (51%) and the conversion sector weights for only the 6%

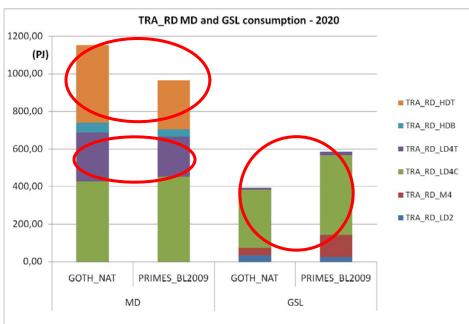
e la Ricerca Ambientale

In the GOTH_NAT scenario CON is one of the most polluting sector (35% like the industrial sector)

Influences on cost analysis:

- MEASURES in CON only from High*
- Main measures in the INDUSTRIAL


SECTOR


MINISTERO DELL'AMBIENTE

Reasons for discrepancies: the ENERGY SCENARIO ANALYSIS

ROAD TRANSPORT SECTOR AT 2020

- TOTAL ROAD TRASPORT fuel consumption is the same
- gasoline and gas oil allocation is completely different
- MD in heavy duty vehicles and light commercial trucks is underestimated in PRIMES
- A considerable difference in gasoline projections for cars and 4T motorcycles

This means a lower freight transport and higher private mobility in PRIMES, NOT REALIABLE for the structure of Italian transport demand

INDEX

- 1. Comparison between emission scenarios based on PRIMES and on national data
- 2. Reasons of discrepancies: the ENERGY SCENARIO ANALYSIS
- 3. Consequences on emissions and cost analysis
- 4. Conclusions

CONCLUSIONS

- ✓ The emission scenarios for SO₂, NO_x and PM2.5 based on PRIMES energy scenario underestimate emissions based on national data
- ✓ Main discrepancies regard the energy scenario
- ✓ PRIMES energy scenario heavily underestimates DOMESTIC biomass consumption causing at 2020 an underestimation of at least 35% of TOTAL PM2.5 emissions
- ✓ PRIMES underestimates fuel consumption in the CONVERSION sector at 2020 with a consequence underestimation of TOTAL SO2 emissions of 24%
- ✓ The structure of Italian transport demand is NOT REALIABLE in PRIMES
- ✓ These discrepancies lead to a different emission starting point at 2020 and influence the whole ambition level analysis
- ✓ The cost analysis based on PRIMES energy data do not consider measures in the most polluting sectors according to emission scenarios from national energy data

