

48th TFIAM meeting in Berlin

The German air pollution control programme and IAM activities in Germany

Johanna Appelhans
Federal Environment Agency
Section II 4.1 "General Aspects of Air Quality Control"

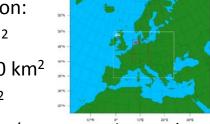
- 1 The German air pollution control programme General Aspects and Responsibilities
- 2 Challenges
- 3 Methodology
- 4 Emissions
 - 4.1 Emissions 2005-2016
 - 4.2 Emission scenarios
- 3 Measures
- 4 Projected improvement of air quality
- 5 Other IAM activities and outlook

The German air pollution control programme-General aspects and Responsibilities

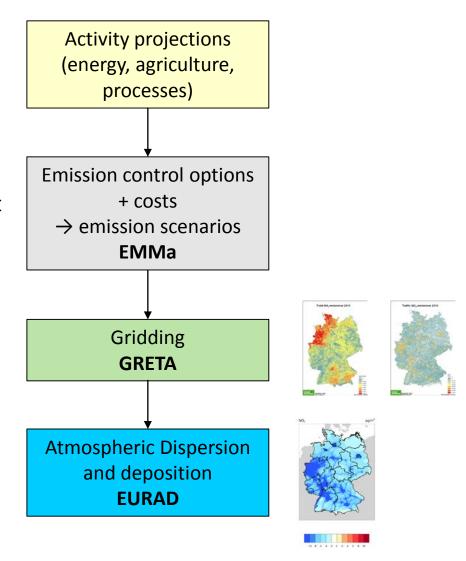
- The German air pollution control programme will soon be available via the UBA website (in German, summary in English)
- UBA is resposible for drafting the programme.
- Ministry of the Environment is responsible for the interservice consultation within the German government and other consultation processes.

Challenges

- The interservice consultation within the German government is not yet concluded.
- Critical issues are:
 - The agreement on a set of measures to reduce NH₃ emissions from agriuculture
 - Coal exit in Germany: The Commission on Growth, Structural Change and Employment ("Coal Exit Commission") has published its final report in January 2019, which sets out a pathway for Germany to phase out coal-fired power generation by 2038 (or 2035). First step: 12.5 GW of capacity will be switched off by 2022.
 - → There is not yet an official energy scenario. But preparation of a sensitivity scenario that shows what effect the German coal phase-out has on emissions of air pollutants.
 - → An update of the German air pollution control programme will include an updated energy scenario.

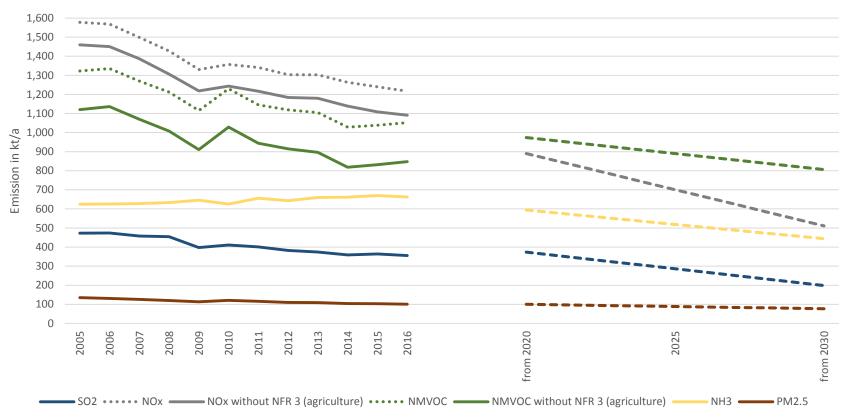

Methodology

- Activity data are coherent with other policies and reporting requirements (e.g. reporting on GHG emissions)
- Database EMMa is connected to the database used to calculate the national emissions for the national inventory report
- Chemical Transport Model EURAD:


Model configuration:
 Europe: 50x50 km²

Central Europe: 10 km²

Germany: 2x2 km²



- Regional air quality (concentration and deposition) for 2020, 2025 and 2030 and comparison with 2005
- Data on hot-spot concentrations available for certain regions.

Emissions 2005-2016

Emissions of SO₂, NO_x, NMVOC, NH₃ and PM2.5 in Germany in the period 2005-2016 (according to submission 2018) and emission reduction committments

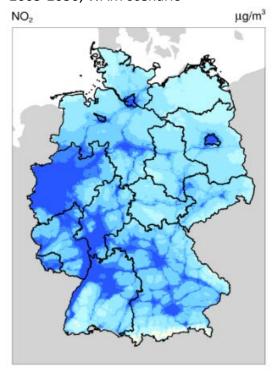
The German air pollution control programme and IAM activities in Germany

Emission scenarios

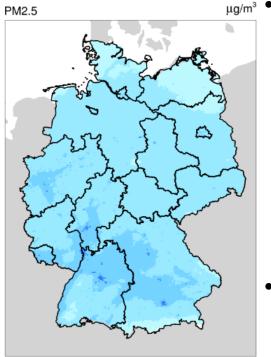
		2005							
		NO _x	SO ₂	NMVOC	NH ₃	PM2.5			
Emissions submission 2018 (including adjustments for NO _x and NMVOC)	kt	1459	473	1121	625	135			
Adjustment anaerobic digestion of energy crops					614				

With Measures Scenario (WM)																
		2020				2025					2030					
		NO _x	SO ₂	NMVOC	NH ₃	PM2.5	NO _x	SO ₂	NMVOC	NH ₃	PM2.5	NO _x	SO ₂	NMVOC	NH ₃	PM2.5
Emission reduction commitments (compared with 2005 base year)	%	39%	21%	13%	5%	26%	52%	39,5%	20,5%	17%	34,5%	65%	58%	28%	29%	43%
NA/:th DAnney Compain	%	40%	34%	28%	2%	33%	50%	44%	30%	8%	36%	59%	50%	30%	9%	39%
With Measures Scenario	kt	882	314	803	614	91	725	267	787	575	86	604	237	785	570	82
Adjustment anaerobic digestion	%				9%											
of energy crops	kt				560											
With Additional Measures Scenario (WAM)																
		2020				2025					2030					
		NO _x	SO ₂	NMVOC	NH ₃	PM2.5	NO _x	SO ₂	NMVOC	NH ₃	PM2.5	NO _x	SO ₂	NMVOC	NH ₃	PM2.5
With Manager Constitution	%	41%	36%	29%	2%	33%	57%	50%	30%	18%	39%	65%	58%	31%	31%	43%
With Measures Scenario	kt	856	304	800	614	90	633	239	782	514	82	504	199	777	431	77
Adjustment anaerobic digestion	%	·	·		9%		·									
of energy crops	kt				560		·									

Measures


- The WAM scenario is based on a more ambitious energy scenario than the WM scenario.
- Additional measures included in the WAM scenario:
 - Set of measures for the transport sector (software update Diesel cars and LDVs Euro 5/6, retrofitting of busses, promotion of public transport, cycling and walking, increase share of electric vehicles)
 - Set of 10 measures for the agricultural sector (i.a. incorporation of manure and slurry within 1 h, low-emission application techniques, covered manure storage, low-emission animal housing)
 - Measures for coal-fired LCPs
 - Implementation of the MCPD
 - Maintain national regulations for solid fuel boilers which are more ambitious than Regulation (EU) 2015/1189 (Ecodesign requirements for solid fuel boilers)

Mean difference of annual mean background concentrations 2005-2030 for relevant pollutants (meteorology 2005) Scenarios WM and WAM


Pollutant	WM scenario	WAM scenario
NO ₂	-6,4	-6,7
O_3	+4,7	+4,7
NH ₃	+0,1	-0,8
SO ₂	-1,2	-1,3
PM10	-4,9	-5,4
PM2.5	-5,1	-5,6

- For NO₂, SO₂ and O₃ differences between the scenarios WM and WAM are relatively small
- No reduction of NH₃
 concentrations in the WM
 scenario but reduction in the
 WAM scenario
- Significant increase of O₃ annual mean values

Change in annual mean NO₂ concentrations 2005-2030, WAM scenario

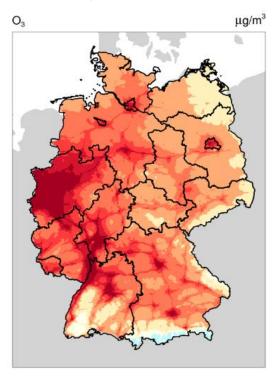
Change in annual PM2.5 concentrations 2005-2030, WAM scenario

-10 -8 -6 -4 -2 0 2 4 6 8 10

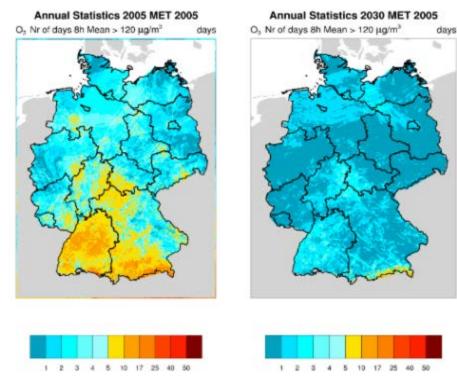
- Clear reduction of NO₂
 background concentrations (up to 10 μg/m³) especially in agglomeration areas and along motorways due to a significant decrease of NO_x emissions from road traffic until 2030. For an assessment of local NO₂ concentrations small-scale models need to be used.
- PM2.5 background concentrations decline (2-8 μg/m³) especially in agglomeration areas due to different emission reduction measures.

Change in annual mean NH₃ concentrations 2005-2030, WM scenario

Change in annual NH₃ –concentrations 2005-2030, WAM scenario



No reduction of NH₃ background concentrations in the WM scenario but decline (in agricultural areas) in the WAM scenario due to agricultural emission reduction measures.


Change in annual mean O_3 concentrations 2005-2030, WAM scenario

-10 -8 -6 -4 -2 0 2 4 6 8 10

Source: Draft German air pollution control programme, UBA 2018

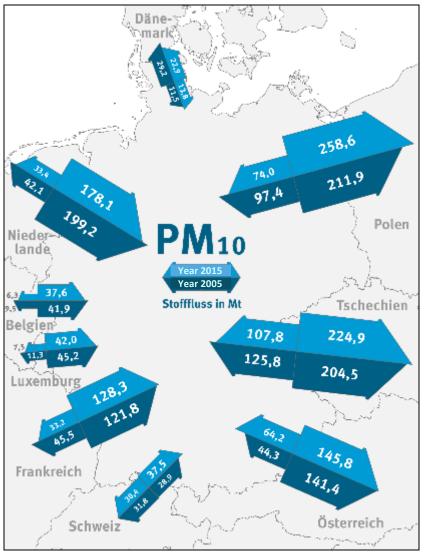
 O_3 - Number of days with 8 h mean > 120 $\mu g/m^3$ 2005 and 2030, WAM scenario (meteorology 2005)

- Projected increase of annual mean ozone concentrations between 2005 and 2030 up to 10 µg/m³ in agglomeration areas due to a reduction of NO emissions in urban areas
- Reduction of peak concentrations due to reductions in precursor emissions

Other IAM activities and outlook

- German study on health effects of NO₂ published in March 2018: estimation of the background NO₂ exposure for the population in Germany and quantification of the related burden of disease for mortality and morbidity. Small scale NO₂ exposure was examined in selected model regions.
- Research project on the assessment of costs and benefits of emissions reduction measures will start in May 2020.

Thank you for your attention!


Johanna Appelhans

johanna.appelhans@uba.de

https://www.umweltbundesamt.de/en/topics/air

Transboundary transport

- Estimation of the flux of pollutants up to an altitude of 3000 metres.
- The methodology has been criticised in the interservice consulations.
- For an updated air pollution control programme a different methodology to estimate transboundary transport will be used.