

Ex-ante evaluation of the French National Air Pollutant Emission Reduction Plan (PREPA)

Results of the final scenario

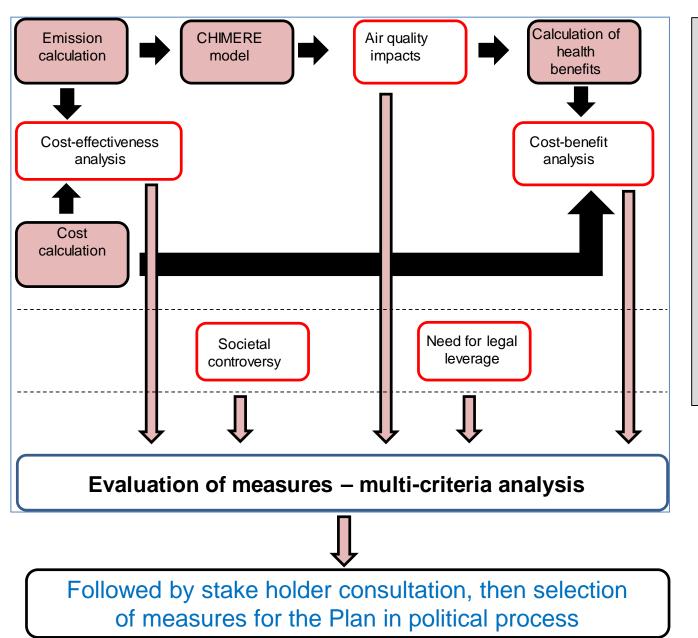
Simone Schucht (INERIS), Nadine Allemand (CITEPA), Elsa Real (INERIS)

46th TFIAM meeting - 2 to 3 May 2017, Paris

STRUCTURE OF THE PRESENTATION

- The double objective of the French PREPA
- Method employed for the selection of measures
- Additional measures selected
- Results
 - Emission reductions
 - AQ impacts
 - Health benefits
- Conclusions

THE DOUBLE OBJECTIVE OF THE FRENCH PREPA (*)


- Reduce air pollutant emissions and improve air quality in order to
 - comply with emissions reduction objectives (NECD) for PM_{2,5}, SO₂, NOx, NH₃ and NMVOC
 - comply with air quality (AQ) concentration requirements for PM₁₀, PM_{2,5},
 NO₂ and O₃ thus reducing limit and target value exceedances

(*) PREPA = Plan National de Réduction des Émissions de Polluants Atmosphériques (PREPA)

French National Air Pollutant Emission Reduction Plan

Project duration: September 2014 – July 2016 – January 2017

METHOD EMPLOYED FOR THE SELECTION OF MEASURES

Measures assessed

- Existing
- Additional
- Technical
- Incentive
- Knowledge improvement
- European
- National
- Local

ADDITIONAL MEASURES SELECTED

- Industry & energy production
 - IED (values between low and high BAT-AELs) for energy processes and refineries
- Transport
 - EURO 6c with real driving conditions test cycle
 - Replacement of public vehicle parks by low emission vehicles
 - Driving restrictions in urban areas when limit values are exceeded
 - City centre low emission zones excluding high emission vehicles
 - Promotion of clean urban transport
 - Increase in fuel taxes
 - Development of combined road/rail transport
 - Development of waterways

ADDITIONAL MEASURES SELECTED

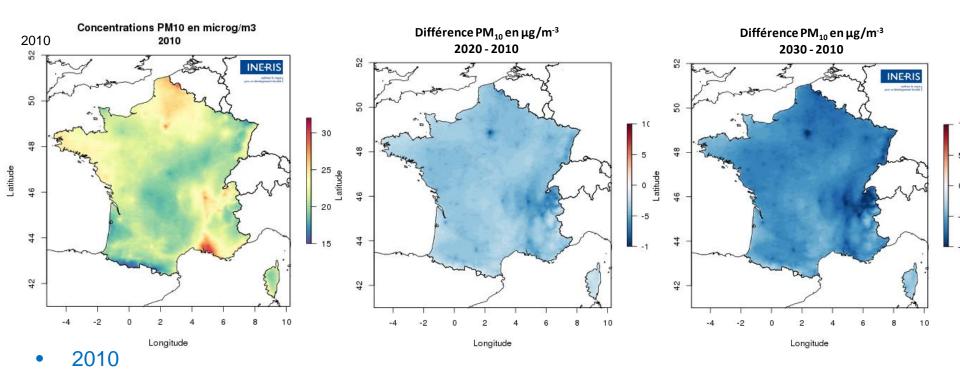
- Non-road mobile engines (industry & agriculture)
 - Stage IIIB and stage IV of mobile engine regulations
 - Regulation on internal combustion engines
- Residential and Tertiary
 - Anticipation of eco-conception directive for small appliances
 - Reduction of the sulphur content of domestic fuel
- Agriculture
 - Reduce NH₃ volatilisation through more rapid incorporation, efficient injection, type of fertilisers...
 - Different measures for building
 - Financial support

RESULTS: EMISSION REDUCTIONS RELATIVE TO OBJECTIVES

PREPA scenario

- Compliance with Gothenburg 2020 objectives
- Compliance with 2030 NEC objectives for 3 pollutants and 2 commitments not fully achieved for SO₂ and NMVOC

Pollutant	2020 relative to 2005			2030 relative to 2005		
	NEC Objective	Baseline	PREPA Scenario	NEC Objective	Baseline	PREPA Scenario
SO ₂	-55%	-64%	-66%	-77%	-68%	-69%
NOx	-50%	-56%	-57%	-69%	-69%	-72%
NMVOC	-43%	-48%	-49%	-52%	-49%	-51%
NH ₃	-4%	3%	-4%	-13%	4%	-13%
PM _{2,5}	-27%	-49%	-52%	-57%	-56%	-62%
PM ₁₀	none	-37%	-40%	none	-41%	-46%

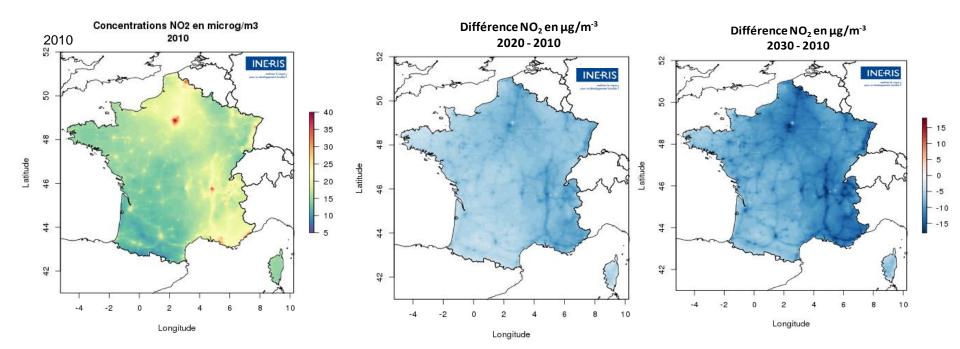

- Assessment based on energy scenario without additional measures
 - Low carbon strategy published since should help reduce SO₂ further
- Some additional measures necessary for VOC

RESULTS: EMISSION REDUCTIONS RELATIVE TO OBJECTIVES

- Additional measures dominating additional emission reductions
 - SO₂ reduction of sulphur concentration in domestic fuel oil to 10 ppm
 - NOx Euro 6c & alignment of diesel with gasoline taxes
 - MNVOC new wood combustion equipment
 - PM_{2.5} & PM₁₀ new wood combustion equipment & alignment of diesel with gasoline taxes
 - NH₃ all additional measures

RESULTS: AQ IMPROVEMENTS

PM₁₀ – annual mean concentrations


- High concentrations mainly in urban centres
- Limit values exceeded mainly around traffic measurement stations
- 2020 & 2030

May 2017 -

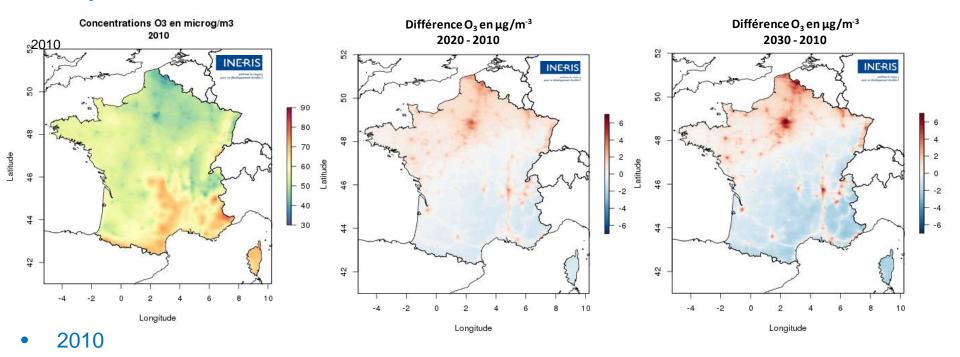
- Emission reductions mirrored in decreasing concentrations (esp. in 2030)
- Particularly in regions with important transport and residential emission sources

RESULTS: AQ IMPROVEMENTS

NO₂ – annual mean concentrations

• 2010

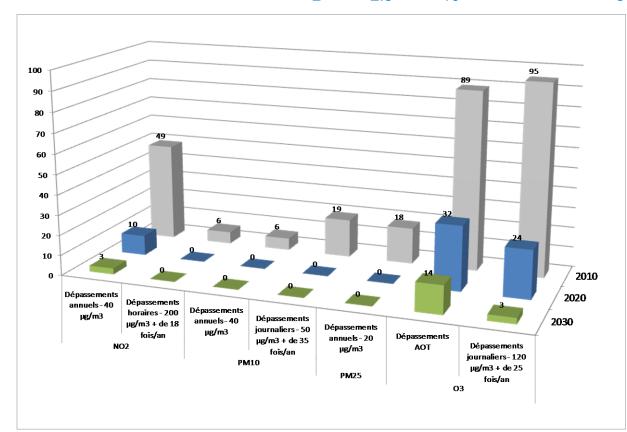
- Highest concentrations close to agglomerations and traffic axes
- Limit values exceeded over the whole territory, majority close to traffic measurement stations


• 2020 & 2030

- Strong reduction in concentrations in proximity to transport
- Particularly in 2030 and close to major roads and agglomerations

Spatialisation via INS, Meteo 2010, boundary conditions NECD compliance

RESULTS: AQ IMPROVEMENTS


O₃ – annual mean concentrations (!)

- Highest concentrations in the south (more sunshine), peaks mainly in rural areas (far from precursor emission sources)
- 2020 & 2030
 - Limited reduction in O₃ concentrations, mainly in the south (where concentrations are high), due to NOx emission reduction
 - Increase in concentrations where ozone concentrations are lower (e.g. Paris region, northern France, close to traffic) => ozone destruction regime

RESULTS: REDUCTION IN AQ EXCEEDANCES

Exceedances of limit (NO₂, PM_{2.5}, PM₁₀) and target (O₃) values

- PM₁₀
 - majority of exceedances in urban background stations and close to traffic in 2010
 - no exceedances in 2020 and 2030 (annual/daily mean)
- \bullet NO₂
 - majority of exceedances in stations close to traffic in 2010
 - Strong reduction in exceedances => 3 exceedances of annual mean in 2030, none of hourly mean

- O_3
 - 2010 majority of exceedances in Southern France
 - peak concentrations strongly reduced by 2030
 - exceedances persist for AOT and daily mean in 2030 but number significantly reduced

RESULTS: HEALTH BENEFITS

- Avoided annual health impacts from PM_{2.5} 2030 rel. to 2010 examples:
 - 180,000 life years lost
 - 11,200 premature deaths (=> -30%)
 => same magnitude as in Holland 2014, CBA for TSAP N° 11 report
 - almost 5 million working days lost
 - 12,000 cases of chronic bronchitis
 - 59,000 cases of bronchitis in children
- Avoided annual health damage (PM_{2.5}, O₃, NO₂)
 - 2020 rel. to 2010: 11 billion € (€₂₀₁₃)
 - 2030 rel. to 2010: 17 billion € (€₂₀₁₃) => -40%
 - Low benefit estimate: VOLY, median, 66% of chronic NO₂ mortality

ARP-France model (developed by EMRC)

Methodology according to WHO 2014, HRAPIE project (Health Risks of Air Pollution in Europe)

Health impacts from exposure to PM_{2.5}, O₃ & NO₂

AQ modelling with CHIMERE

CONCLUSIONS

- Decision support project providing stakeholders and decision makers with comprehensive information
 - comprehensive assessment of emission reduction strategies and individual measures according to multiple evaluation criteria
- Final decision of measures included in PREPA scenario by the Environment Ministry
- Emission reductions in 2020
 - emission reduction obligations (Gothenburg/NEC) met for all pollutants
 - important over-compliance except for NH₃
- Emission reductions in 2030
 - some additional efforts necessary to meet 2030 NEC objectives for SO₂ and VOCs
 - NH₃ emission reductions in the future depend completely on additional PREPA measures
- Significant AQ improvements for NO₂, PM_{2.5} and PM₁₀, less so for O₃
 - only few AQ limit value exceedances in 2030 (NO₂),
 - target value exceedances persist for O₃ though number significantly reduced
- Important reductions in health effects and costs
 - premature mortality due to PM_{2.5} reduced by 30% in 2030 rel. to 2010
 - health benefits equal 17 billion € in 2030 rel. to 2010
 - => All documents related to the PREPA (evaluation & legal) published at: http://www.developpement-durable.gouv.fr/politiques-publiques-reduire-pollution-lair

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGEMENTS

TO THE PROJECT TEAM

CITEPA, INERIS, AJBD AND ENERGIES DEMAIN
AND TO THE MINISTRY FOR ENVIRONMENT (MEEM)

ANNEXE

RESULTS: HEALTH BENEFITS

Avoided health impacts

Avoided health impacts	Unit	Polluant	2020 relative to 2010	2030 relative to 2010
Acute Mortality (All ages)	Premature deaths		78	100
Respiratory hospital admissions (>64)	Cases		224	408
Cardiovascular hospital admissions (>64)	Cases	O ₃	914	1 668
Minor Restricted Activity Days (MRADs all ages)	Days	O_3	-98 246	-303 362
Chronic Mortality (all ages) LYL	Life years lost		-718	-1 559
Chronic Mortality (30yr +) deaths	Premature deaths		62	79
Chronic Mortality (All ages) LYL	Life years lost		-117 105	-179 241
Chronic Mortality (30yr +) deaths	Premature deaths		-7 263	-11 236
Infant Mortality (0-1yr)	Premature deaths		-26	-38
Chronic Bronchitis (27yr +)	Cases		-7 793	-11 900
Bronchitis in children aged 6 to 12	Cases	DM	-36 634	-58 707
Respiratory Hospital Admissions (All ages)	Cases	PM _{2.5}	-3 429	-5 228
Cardiac Hospital Admissions (>18 years)	Cases		-2 404	-3 612
Restricted Activity Days (all ages)	Days		-11 761 319	-17 896 995
Asthma symptom days (children 5-19yr)	Days		-419 181	-671 753
Lost working days (15-64 years)	Days		-3 255 274	-4 962 541
Bronchitis in children aged 5 to 14	Cases		-60 683	-98 178
Acute Mortality (All ages)	Premature deaths		-1 097	-1 761
Respiratory Hospital Admissions (All ages)	Cases	NO ₂	-9 717	-15 169
onic Mortality (All ages) LYL Life years lost			-16 798	-23 810
Chronic Mortality (30yr +) deaths	Premature deaths		-13 308	-19 445

RESULTS: HEALTH BENEFITS

Avoided health damage

Avoided health damage, million Euro/year	Polluant	2020 relative to 2010	2030 relative to 2010
Acute Mortality (All ages)		5	7
Respiratory hospital admissions (>64)		1	1
Cardiovascular hospital admissions (>64)	O_3	2	4
Minor Restricted Activity Days (MRADs all ages)		-5	-15
Chronic Mortality (all ages) LYL		-48	-103
Chronic Mortality (30yr +) deaths		78	99
Chronic Mortality (All ages) LYL		-7 762	-11 881
Chronic Mortality (30yr +) deaths	PM _{2.5}	-9 095	-14 069
Infant Mortality (0-1yr)		-48	-72
Chronic Bronchitis (27yr +)		-480	-733
Bronchitis in children aged 6 to 12		-25	-40
Respiratory Hospital Admissions (All ages)		-9	-13
Cardiac Hospital Admissions (>18 years)		-6	-9
Restricted Activity Days (all ages)		-1 243	-1 892
Asthma symptom days (children 5-19yr)		-20	-32
Lost working days (15-64 years)		-486	-741
Bronchitis in children aged 5 to 14		-41	-66
Acute Mortality (All ages)	NO_2	-73	-117
Respiratory Hospital Admissions (All ages)		-25	-39
Chronic Mortality (All ages) LYL		-1 113	-1 578
Chronic Mortality (30yr +) deaths		-16 664	-24 349