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energy system

a low regret energy strategy to meet security, 
climate and air pollution objectives

A preliminary development for illustration only

Mark Barrett, Ed Sharp
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(run presentation to see animations)
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Policy objectives

Renewable energy can be the 
foundation for an integrated, low 
risk, reversible and long term 
energy  policy for:
• Social well being
• Energy security
• Climate stabilisation
• Air pollution

Many renewables do not incur 
long term, spatially expansive 
environmental impacts.
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Qualitative aspects of low carbon supply options

Relative subjective marks: 10 – good

• Qualitative aspects are major drivers of social and political technology choice, as exemplified by concerns 
about nuclear power, shale gas and carbon sequestration. 

• Mass produced renewables are the reversible, low risk, low cost option.

Renewables Nuclear Fossil
Hydro river Carbon 
Biowaste Sequestration

Solar Wave Tidal barrage
Wind Tidal flow Hydro reservoir Biocrop

Reversibility 10 10 5 7 0 0

Risk 10 10 5 5 0 2

Climate change mitigation 10 10 10 5 10 7

Other environment 10 10 8 6 0 8

Potential impact outside UK 10 10 10 10 0 0

Consumption global resources 10 10 10 5 5 7

International political impact 10 10 10 10 0 8

Political security 10 10 10 8 0 9

Transparency 10 10 8 7 0 5

Certainty costs and performance 10 5 6 7 0 2
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UK renewable electrical energy technical and economic potential

Estimates based on current 
costs.

Wind and solar:
• mass produced technologies
• resource vast

Uncertain commercial cost
• Tidal, wave, (nuclear)

An advantage of tidal is that it is 
predictable, and output can be 
partially controlled from barrage 
schemes with storage.

Generation only: excludes system balancing
Discount rate: 5 %/a
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Evolution of electricity system dynamics

2015 to 2055, increasing demand and uncontrollable renewables  absorbed with 
storage, dispatchable renewables and trade. CHP increases and declines.

winter             spring          summer       autumn      days

DynEMo

(wait for animation)
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Evolution of electricity system dynamics

GBR: 2055: 4 days, 1 d/mth, mths 1,4,7,10; ∆t=10m
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Energy system dynamics: simple hourly model
Sample 2 days and 2 weeks

2 days

2 weeks
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How much 
storage is 
needed?
(Simple model: assuming 
100% renewables and no 
trade)

1. Model hourly demands and renewables across the year

2. The minimum storage is the maximum difference between 
cumulative demand and supply
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Annual demand and renewable supply variation over 31 years

• Considerable inter-annual variation in wind generation (about +/-20% on shore; +/- 10% off-shore)
• Less variation in total demand (about 5%) because the weather driven component of electricity 

demand is small (in scenario)
• Large variation in storage required. For a 700 TWh/a demand/supply system around 70 TWh of 

storage is required, i.e. 10% of annual demand. Storage can be a mix of heat, EV batteries, chemical, 
biomass, fossil etc.
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Some (electrically connected) storage options for system management
- for UK, excluding bioenergy and fossil energy stores

Potential storage with 
upwards of 200 GWe 
power and 5 TWh energy. 

Ammonia/hydrogen and 
district heat stores can be 
very large.

System electricity storage 
(batteries etc.) relatively 
costly and inefficient.

Number Max Time
STORAGE Restriction GW hrs GWh Efficiency
Current Pumped storage 4 2.9 11.5 33 75%
used Industy/services Various 50 2.0 1.0 2 95%

Water industry water pumping 10 0.5 4.0 2 95%
Total 5.4 6.9 37 95%

In place Domestic Off peak bricks Winter 1 M 10.0 1.0 10 95%
need controls HW tanks 5 M 20.0 0.5 10 95%

Industy/services? HW tanks 0.5 M 10.0 0.5 5 95%
General Electric heating Winter 0.5 M 1.0 1.0 1 95%

Total 41.0 0.6 26 95%
Future Building storage Building fabric Winter 30 M 50.0 1.0 50 80%
additional HW tanks 20 M 20.0 1.0 20 95%

Electric vehicles battery 20  M 50.0 1.0 50 75%
District heating heat pumps/CHP Winter 100 50.0 100.0 5000 95%
Synthetic fuels H2, NH3 50 20.0 500.0 10000 95%

Total future additional 190.0 79.6 15120 95%
Total future 236.4 64.2 15183 95%
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International trade

Transmission evens out the variations in demands 
and renewable supplies so that the demand-
supply matching problem is reduced and less 
storage is needed. 

The UK now has 4 GW interconnection, and 
another 8 GW is planned, so perhaps 12 GW 
by 2025.

How will international trade flows vary hour by 
hour? Need to model all the 
countries/regions.

What can we rely on importing in time of need? 
And exporting in time of surplus?

What is the best balance between storage, 
transmission and trade?
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What is the best balance between storage, transmission and trade?

System consists of :
Nodes with
• Demands – heat and electricity
• Intermediate conversion – district heating, 

heat pumps…
• Renewables variable uncontrollable
• Renewables dispatchable (hydro, biomass)
• Stores – heat and electricity

Transmission links with certain capacity (GW)

Nodes can be individual countries or groups of 
countries.

The further apart nodes are, the more 
meteorology, demands and renewables are 
‘smoothed’ so less storage is needed.
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What is the best balance between storage, transmission and trade?

First scope – Europe, but databases global
A. For each country

1. Collect hourly meteorology and renewable resource
2. Collect base year data for demand and supply
3. Project scenario demands
4. Project initial generation, storage and transmission capacities

B. Optimise – iterate simulation changing decision variables 
(generation, storage and transmission capacities) to find least total capital 
and running cost of system

For each country, for each hour across year, simulate:
1. demands using social activity patterns and meteorology
2. uncontrollable renewable energy – solar, wind
3. flows to country demands
4. flows to country stores of heat and electricity
5. flows from countries with surplus to countries with deficits
6. generation by dispatchable sources (hydro, bioenergy) to meet 

remaining deficit

Simulate and optimise for different weather years to 
find extreme weather that stresses the system

Optimisation

Simulation

History
Meterology
Demand
Supply

Scenario
Meteorology
Demand
Supply

Decision 
variables
Demand
Supply
Storage
Transmission

Results
Energy flows
Costs 
Emissions
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Country by country data 

Historical hourly generation and trade 
Example: Norway
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Bioenergy
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Bioenergy is a premium renewable:
• Has carbon (!) and can be used 

to make liquid transport fuels

• Has integral energy storage and 
may be a critical component of 
high renewable systems

But:
• Can compete with food 

production
• Has complex environmental 

impacts
• Is scarce, e.g. UK waste 

bioenergy perhaps enough to 
make <50% aviation fuel

• Causes combustion and othr
emissions

UK bio and primary energy scenarios
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Non CO2 global warming: aviation, methane and biomass

Global warming (NB different time 
horizons) from:
• high altitude aviation
• Natural/bio gas leakage (pipe, 

LNG, flare, etc.)
• bioenergy (sequestered carbon 

loss, CH4, N2O, etc.) 

Very uncertain but a significant 
fraction of total GW, perhaps 50-
70% in low carbon scenarios.

(And aviation growth will make it difficult 
to control air pollution around airports.)
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Development

Implications for air pollution from fossil combustion 
1. General reduction in annual emission

2. Emissions will be more variable in space and time (hours to seasons) 
as dispatchable bioenergy is used to when other renewables low, so 
relatively high energy related emission episodes might remain

3. There will be correlations between meteorology, and demand, 
renewables and atmospheric pollutant processes
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How long might the cables be?
• Regular east-west diurnal, and seasonal, variations in demands and renewables
• Match varying demand and supply with transmission as well as storage
• Energy exchange enhances political security 
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Designing a national renewable energy system

A system which 
will operate hour 
by hour across the 
days, months and 
years.

1. Demand

2. Supply

3. Integration

4. Operation

DynEMo
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Energy system dynamics: simple hourly model
Monthly cumulative supply-demand variation for each of 31 years

(Modelling based on 31 years of hourly meteorology and wind power generation from Dr Ed Sharp)

Considerable monthly variation in cumulative supply-demand resulting in minimum and 
maximum of about -/+ 70 TWh, or 10% of annual demand.
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Electricity system stress examples over 3 days

District heating: energy

current and projected 

GBR: 2055: 3 days, 3 d/mth, mths 1; ∆t=7.5m
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GBR: 2055: 3 days, 3 d/mth, mths 1; ∆t=7.5m
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GBR: 2055: 3 days, 3 d/mth, mths 7; ∆t=7.5m
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SUMMER. 35 oC. No wind, no trade. 

DH: CHP fills store to maximum then just tops up. 
What if DH were used for cooling?

District heating: energy

current and projected 
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WINTER-5 oC. No wind, no trade.

DH: CHP at maximum. Boiler used when DH store empty 
and more heat required – gas heating used to manage 
the electricity system.

Electricity: bio CHP and fossil gas main supplies. Electricity: Solar, CHP then fossil gas when DH store full 
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Conclusions

• It is possible to design 100% renewable systems that will function hour by hour in 
different meteorological conditions.

• Detailed spatiotemporal modelling is needed to explore functioning systems.

• There is abundant renewable electrical energy potential. If demand is higher then 
renewables, storage etc. can be scaled up.

• Biomass energy resources are uncertain and may be insufficient for aviation. 

• Risky, irreversible nuclear is unnecessary and fossil CCS is insufficient for near zero 
carbon.

• District heating and synthetic fuels have important management roles through storage 
and multi-fuelling.

• Aviation growth is probably incompatible with UK climate change mitigation targets.
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Thank you for listening.

Questions?
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