Global trends of methane emissions and their impacts on ozone concentrations Rita Van Dingenen European Commission, Joint Research Centre #### Policy-relevant questions: - What is our current understanding of observed changes of CH_4 concentrations and background O_3 , and modelling capacity to understand these changes? - What is the current knowledge on the geographical distribution of CH₄ emissions and on the contributing sources? - What are policy-relevant CH_4 emission scenarios until 2050 and how are they expected to contribute to O_3 concentrations in Europe and other parts of the world? - What are benefits to human health, crops and vegetation of ${\rm CH_4}$ emission reductions in the EU alone, and through collaboration with other parties? - Which are the most promising economic sectors to effectively achieve CH_4 emission reductions? JRC SCIENCE FOR POLICY REPORT Global trends of methane emissions and their impacts on ozone concentrations Van Dingenen, R., Crippa, M. Maenhout, G., Guizzardi, D., Dentener, F. 2018 #### Global Methane Budget 2003 – 2012 (Tg/yr) #### Methane: observed global concentration trend Pre-industrial: 722 ppb After plateau 1998 – 2007 methane concentration increasing again Average growth rate since pre-industrial #### Anthropogenic methane emission trends by sector 1970 – 2012 Source: JRC EDGAR v4.3.2 http://edgar.jrc.ec.europa.eu #### Methane yr 2012 emission by sector, by region #### Ozone response to (globally uniform) CH₄ concentration reduction #### Local long-term $CH_4 \rightarrow O_3$ response - is largely **independent** of **location of CH₄ emission** change - depends on **local NO_x and NMVOC** emissions Source: JRC, TM5 model #### Surface O₃ response sensitivity to CH₄ emission change Source: JRC TM5 model, HTAP1 and HTAP2 models (Turnock et al., 2018) # How much has CH_4 contributed to O_3 in Europe? (HTAP1 modeling results) European Commission Source: Wild et al., Atm. Chem. Phys, 2012 #### Future CH₄ emission scenarios #### Past and projected global CH₄ emissions #### Delta between (H) and (L) scenarios (mitigation potential) # Future CH_4 emission scenarios and their impacts on O_3 and health Projected change in regional mean ozone exposure metric 6mDMA1 in 2050, relative to year 2010, for the highest and lowest global CH_4 emission scenarios in each family. Source: JRC TM5-FASST #### O₃ health benefit from CH₄ mitigation Change in global premature deaths from 2010 to 2050 for various CH₄ emission scenarios #### CH₄ mitigation potential | Sector | Control measure | |---|---| | Livestock | Enteric fermentation: diet changes, vaccination | | | Improving animal health and productivity: genetic improvement, diet changes | | | Manure management: anaerobic digestion, direct injection in soils of liquid manure. | | Rice cultivation | Mixed: interrupted flooding and alternate wetting and drying, alternative hybrids, sulfate amendments | | Agricultural waste burning | Ban on burning. | | Solid waste | Maximum separation and treatment, no landfill of biodegradable waste | | Wastewater | Extended treatment with gas recovery and utilization | | Coal mining | Pre-mining degasification | | | Ventilation air oxidizer with improved ventilation systems | | Conventional natural gas production | Recovery and utilization of vented associated gas | | | Good practice: reduced unintended leakage | | Unconventional natural gas production | Good practice: reduced unintended leakage | | Long-distance gas transmission in pipelines | Leakage control, especially at the pumping units | | Gas distribution networks | Leakage control and replacement of grey cast iron networks | | Oil production and refinery | Recovery and utilization of vented associated gas | | | Good practice: reduced unintended leakage | #### Key messages: - Unabated, global anthropogenic CH_4 emissions could increase by 35 to 100% by 2050 for a range of pessimistic scenarios, causing 40,000 (+12%) to 90,000 (+26%) more O_3 premature deaths compared to present-day O_3 levels. - By contrast, optimistic sustainability scenarios project CH_4 emission reductions of up to 50% by 2050 saving worldwide 30,000 (-9%) to 40,000 (-12%) lives. - Except for most stringent mitigation scenarios, the relative contribution of CH_4 to surface O_3 (and its environmental impacts) will increase in the next decades - Sustainable scenarios assume structural changes in the energy, waste and agricultural sectors, together with the implementation of all currently available emission abatement technologies. - A number of the methane emission reduction technologies may have negative, zero or small positive costs, making them attractive targets for policies. - The benefits of CH₄ of emission reductions are globally distributed, therefore global mitigation strategies are most effective in reaching substantial health benefits within and outside individual world regions #### JRC SCIENCE FOR POLICY REPORT ## Global trends of methane emissions and their impacts on ozone concentrations Van Dingenen, R., Crippa, M., Maenhout, G., Guizzardi, D., Dentener, F. 2018 ## Thank you! publications.jrc.ec.europa.eu Report nr: EUR 29394 EN rita.van-dingenen@ec.europa.eu