The effects of intercontinental emission sources on European air pollution levels (HTAP2 + ship emissions) Jan Eiof Jonson, Michael Schulz, Hilde Fagerli #### **HTAP2 Modellers:** Marianne Tronstad Lund, Takashi Sekiya, Kengo Sudo, Yanko Davila, Kateryna Lapina, Johannes Flemming, Daven Henze, Louisa Emmons Toshihiko Takemura HTAP2 archive: Anna Benedictow, Jan Griesfeller, Brigitte Koffi **HTAP2 Observations:** Paul Eckhardt + NILU Frank Dentener and Terry Keating The first part of this presentation is mainly based on the Jonson et al. (2018) paper included in the ACP special issue: Global and regional assessment of intercontinental transport of air pollution: results from HTAP, AQMEII and MICS - 1. what fraction of European air pollution (ozone) concentrations can be attributed to sources of contemporary anthropogenic emissions within Europe compared to extra-regional sources of pollution? - 2. Does the ozone metric matter? ## Additional calculations focusing on ship emissions - Main focus on ozone - Ship emissions sub-divided into separate sea areas - Focus on Europe # HTAP2 European source and receptor regions. Norwegian Meteorological Institute ### Nearby source regions: (partly included in HTAP1 def. of Europe) - Shipping - Russia, Ukraine and Belarus - Middle East - North Africa ### Question 1: (Europe only) Europen versus non- European sources. Norwegian Meteorologica Institute $$RERER = \frac{EURALL - GLOALL}{BASE - GLOALL}.$$ - GLOALL: All anthropogenic emissions reduced with 20% - EURALL: All European emissions reduced by 20% - Base: Reference model run RERER = 1: Dominated by external anthropogenic sources RERER = 0: Dominated by internal (European) sources. #### European ozone from different word regions Norwegian Meteorological Institute NB! Effect of CH₄ calculated from a 20% change in concentrations and NOT emissions NB! Regions in ROW model dependant #### **Question 2: Ozone metric: Does it matter?** % contribution to athropogenic ozone #### Only results from EMEP model, but: In Jonson et al. 2018 we show that other HTAP2 models show similar patterns when showing results for summer only. SOMO35: Annual sum of ozone over 35 ppb POD forest: Phyto-toxic ozone dose for forests ### Ship emissions - 1. In what way will emissions from separate sea areas affect Europe? - 2. And how are individual European countries/regions affected? Norwegian Meteorological Institute #### We use: - Land based emissions from Eclipse - Global ship emissions from FMI (Finnish Meteorological Inst.) #### Model runs (2015 meteorology and emissions) - 1. Base run (with spinnup) - 2. SR All: Reducing all anthropogenic emissions by 15% (with separate spinnup) - 3. SR AllSh: Reducing all ship emissions by 15% (with separate spinnup) - 4. SR BALNOS: Reducing North Sea and Baltic Sea emissions by 15% - 5. SR MEDBL: Reducing Mediterranean and Black Sea emissions by 15% - 6. SR ROW: Reducing ROW (Rest Of World) shipping by 15% (with separate spinnup) Disregarding non-linearities: In the next slides we assume Base - SR All represent 100% of the anthropogenic contribution ### Percentage anthropogenic contribution to PM2.5 #### Mediterranean countries Norwegian Meteorological Institute Length of bars for: All Ships and other sea areas indication of linearity. Regional emissions dominates in the Mediterranean ### And ozone, North Sea and Baltic Sea countries (far from linear, metric matters) SOMO35 - larger effects from emissions near Europe compared to annual average ozone Meteorological (But more similar for All Ships) NB! upper limit. Ship plumes not resolved #### Annual average ozone #### SOMO35 # Ozone, Mediterranean countries (less non-linear) Annually averaged ozone and SOMO35 more similar ROW largest non-Mediterranean in most countries Meteorological Institute No overall titration **Norwegian Meteorological Institute** #### **Conclusions:** #### HTAP2 - ➤ HTAP2 Q1: For ozone in Europe intercontinental contribution larger than regional (European) sources - > HTAP2 Q2: but it is sensitive to choice of ozone metric - > Role of methane? - Model diversity same range as HTAP1 even when using the same emissions. ### Ship emissions: - > Sh Q1: For ozone substantial contributions from distant (ROW) sources. - ➤ Sh Q2: NB! Difference Mediterranean and NW Europe - > For PM2.5 emissions close to shore most important # Ship emissions: Recent and coming regulations Norwegian Meteorological Institute #### Recent or impending regulations: - (S)ECA Outside N. America, North Sea and Baltic Sea. Maximum 0.1% sulphur in fuel. - (N)ECA: Outside N. America (2016), North Sea and Baltic Sea (both from 2021). Tier III NO₂ (~80% reductions) on new ships. - Global sulphur cap (0.5% sulphur in fuel) from 2020 #### Coming IMO regulations/ambitions: - 30% reductions in CO₂ by 2030 (even when allowing for volume growth) - 50% reductions in CO₂ by 2050 (even when allowing for volume growth) #### Press release December 2018 A.P. Moller - Maersk (worlds largest container carrier) aims at having carbon neutral vessels commercially viable by 2030 and calls for strong industry involvement. And fully carbon neutral by 2050. ### Direct quote from IMO: Norwegian Meteorological Institute IMO: Adoption of the initial IMO strategy on reduction of GHG emissions from ships and existing IMO activity related to reducing GHG emissions in the shipping sector., Available at: https://unfccc.int/sites/default/files/resource/250_IMO%20submission_Talanoa%20Dialogue_April%202018.pdf, "to reduce CO2 emissions per transport work, as an average across international shipping, by at least 40% by 2030, pursuing efforts towards 70% by 2050, compared to 2008; and GHG emissions from international shipping to peak as soon as possible and to reduce the total annual GHG emissions by at least 50% by 2050 compared to 2008 whilst pursuing efforts towards phasing them out as called for in the Vision as a point on a pathway of CO2 emissions reduction consistent with the Paris Agreement temperature goals." It is believed that this goal can only be reach with a large penetration of zero emission ships # Model validation: Ozone in Europe # From Dong et al. 2018 (acp special issue) Europe and East Asia #### HTAP1 report 2010 - HTAP2 RAIR now 82% for Europe **Table 3.1.** Annual and spatial mean surface O_3 response (ppbv) to 20% decreases in anthropogenic precursor emissions (NO_x, CO, VOC, plus aerosols and their precursors). Values are mean \pm one standard deviation across the 15 models that conducted the regional perturbation simulations. Bold font denotes responses to foreign emission perturbations that are at least 10% of the response to domestic emission perturbations. Also shown is the relative annual intercontinental response for each receptor region defined as the ratio of the total response in mean surface O_3 due to changes in the other three source regions compared to that due to changes in all regions. (NA: North America, EU: Europe, EA: East Asia, SA: South Asia) | | Receptor Region | | | | |--|-----------------|-----------------|-----------------|-----------------| | Source Region | NA | EU | EA | SA | | Annual mean dec NA+EU+EA+SA: 1.43 | | | | | | NA | 1.04±0.23 | 0.37±0.10 | 0.22 ± 0.05 | 0.17±0.04 | | EU | 0.19±0.06 | 0.82 ± 0.29 | 0.24 ± 0.08 | 0.24 ± 0.05 | | EA | 0.22±0.06 | 0.17±0.05 | 0.91 ± 0.23 | 0.17±0.05 | | SA | 0.07 ± 0.03 | 0.07 ± 0.03 | 0.14 ± 0.03 | 1.26±0.26 | | Relative Annual Intercontinental Response (RAIR) | | | | | | | 32% | 43% 82% | 40% | 32% | # HTAP2 requested SR model runs