GLIMPSE

A modeling system for coordinated air, climate, and energy planning

Dan Loughlin and Chris Nolte U.S. EPA Office of Research and Development, RTP, NC

Presented to the Task Force for Integrated Assessment Modeling 52nd session, May 24th-26th, Utrecht, Netherlands

May 25th, 2023

• Acronyms

- GCAM-USA: Global Change Analysis Model with state-level resolution
- GLIMPSE: GCAM Long-term Interactive Multi-Pollutant Scenario Evaluator

Intended audience

• Air quality integrated assessment modeling community

• Disclaimers

- The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA.
- Any mention of trade names, products, or services does not imply an endorsement by the US Government or EPA. EPA does not endorse any commercial products, services, or enterprises.

U.S. EPA Office of Research and Development Air Quality IAM Research Activities

Objective

- Develop a decision support tool for:
 - Projecting Greenhouse Gas (GHG) and air pollutant emissions for specific scenarios
 - Estimating the impacts of potential federal, regional, and state policies
 - Designing holistic policies that account for "upstream" and "downstream" emissions
 - Identifying cost-effective strategies for meeting air, climate, and energy objectives
 - Assessing the impacts of new and emerging technologies

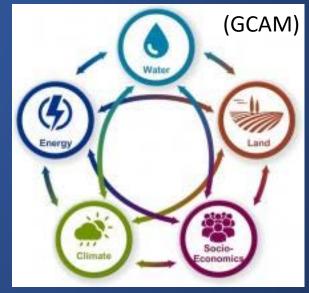
• Potential users:

- EPA regulatory offices
- Regional Planning Organizations (RPOs)
- State environmental, climate, and energy planners
- University researchers

U.S. EPA Office of Research and Development Air Quality IAM Research Activities

Requirements

- Generally consistent with EPA inventories and technology projections
- Technology-rich, particularly in energy supply and demand
- Able to capture multi-sector, multi-pollutant dynamics
- State-level resolution, global context
- Policy-relevant levers
- Low-to-zero cost (software and computing)
- Transparent/open source
- Easy to use

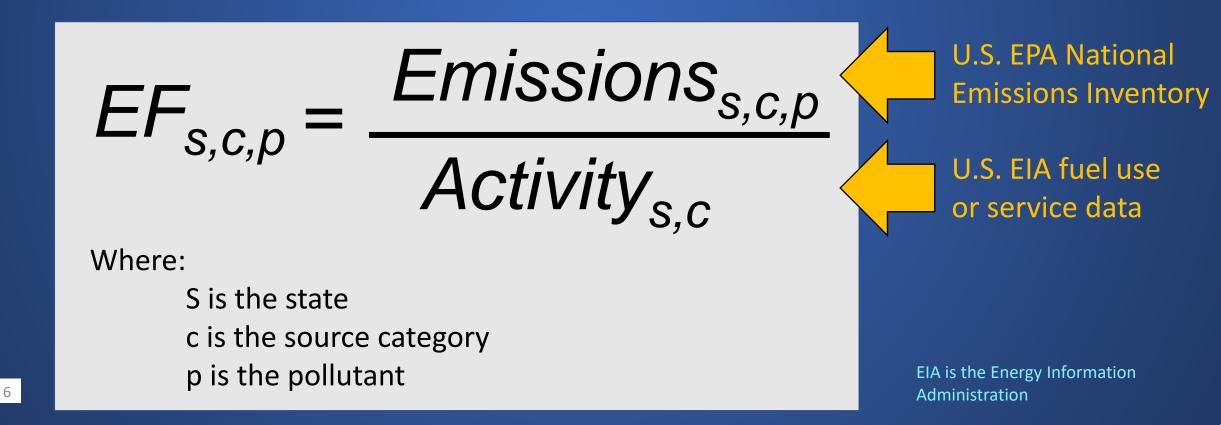

U.S. EPA Office of Research and Development Air Quality IAM Research Activities

Requirements

- Generally consistent with EPA inventories and technology projections
- Technology-rich, particularly in energy supply and demand
- Able to capture multi-sector, multi-pollutant dynamics
- State-level resolution, global context
- Policy-relevant levers
- Low-to-zero cost (software and computing)
- Transparent/open source
- Easy to use

Pacific Northwest National Laboratory (PNNL)'s GCAM-USA met most of these requirements

Global Change Analysis Model


https://github.com/JGCRI/gcam-core

Addressing consistency: PNNL activities

• The Community Emissions Data System (CEDS)

- Development led by Steve Smith of PNNL
- Calculates emission factors (EFs) used in GCAM-USA

Addressing consistency: EPA activities

Improving future-year EFs:

- Emission standards for various source categories
- Electric sector EFs from the Integrated Planning Model (IPM)
- Onroad mobile EFs developed from EPA's Motor Vehicle Emissions Simulator (MOVES) model

• Other modifications:

- Regional Greenhouse Gas Initiative in the Northeast U.S.
- Electric vehicle (EV) market share estimates from finalized EPA regulatory actions
- Inclusion of state-level policies
 - GHG mitigation targets
 - Renewable Portfolio Standards updates
 - Onroad EV targets

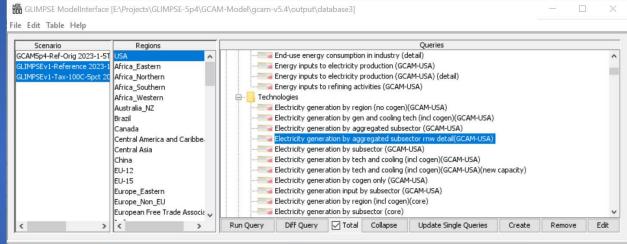
Addressing usability: EPA activities

Supporting modeling

- Easily construct policies
 - RPSs, EV targets, caps, taxes, and subsidies
- Combine to create scenarios
- Manage and monitor runs
- Assist with Quality Assurance
 - Creates metadata
 - Checks inputs for conflicts
 - Monitors resources
 - Assists with debugging
 - Manages files
 - Creates archives for storage and repeatability

a GLIMPSE Scenario Builder File Tools View Help												
Component Library Search:	$+ \square \square \times \bigcirc$	Create Scenario	GLIMPSEv1-Tax-100C-5pct									
Component Name	Created v	c	omponent Name									
Tax_C_100dpt-5pct-2025.csv	2023-05-01: 12:14	Policy-LD-NTR-BEV-	Sales-LDComTruck.csv									
Policy-ROW-CTax-25dpt5pct.csv	2023-04-28: 06:56	Policy-LD-NTR-BEV-	Policy-LD-NTR-BEV-Sales-LDTruck.csv									
Calib-OnroadTrn-SW-Ref-Updates.txt	2023-04-27: 11:50	Policy-EGU-NSPS-EF	Policy-EGU-NSPS-EFs-NOxSO2PM.txt									
DeepDecarbAssumptions.txt	2023-04-27: 11:43	Policy-NoBiomassEG	iUinMA.csv									
Tech-NoLDVCNGs.csv	2023-04-25: 16:31	Tax_C_100dpt-5pct-2	Tax_C_100dpt-5pct-2025.csv									
Policy-100pct-EV-NoConv2050.csv	2023-04-25: 13:35	< ()))))))))))))))))))									
Policy-100nct-EV-FreightTrok-Heavy csy	2022-04-25- 12-22	(F) 🔺 🔽									

GLIMPSE Scenario Builder

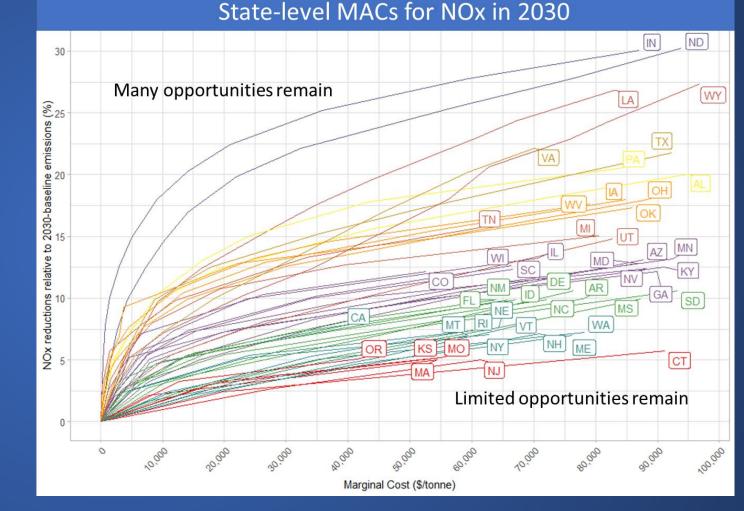

Scenario Name	Created	Completed	Status	ProbMkts	Runtime				
GCAM5p4-Ref-Orig	2023-04-24: 12:20	2023-05-01: 08:48	Success		0 hr 51 min				
GLIMPSEv1-Reference	2023-05-01: 09:20	2023-05-01: 11:04	Success		1 hr 41 min				
GLIMPSEv1-Tax-100C-5pct	2023-05-01: 12:20	2023-05-01: 13:55	Success		1 hr 34 mir				

Addressing usability: EPA activities

Supporting analysis

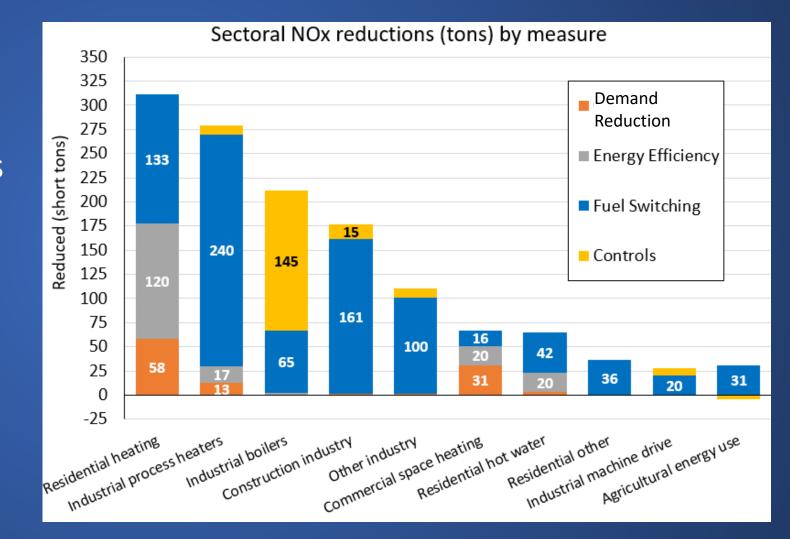
- On-demand graphing
- Filtering and sorting
- Identify major differences
- On the horizon
 - Sankey diagrams
 - Maps
 - Customizable units
 - Favorites
 - Queries
 - Regional groupings

GLIMPSE Model Interface


🔀 Diff: Outputs by tech 🛛 🔀 Diff: Prices of all markets 🛛 🔀 Diff: Building service costs 🔀 Electricity generation by aggregated subsector rnw detail(GCAM-USA)

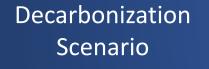
Filter		Graph	Form	nat											_			1		•											
sce	reg	sub	2015	2020	2025	2030	2035	2040	2045	2050	Units		L	More		Disp	olay	2		1	Sta	acked	Bar 丶	^		ame	Scale		Re	fresh	
GLIM	Total	biom	0.240	0.207	0.170	0.166	0.178	0.188	0.207	0.231	EJ	~			GI	IMP	SEv	1-Re	fere	ence			1	GI	IMPS	SEv1-	Tax-	1000	:-5n	et	1
GLIM	Total	coal	5.30	2.69	2.64	2.08	1.79	1.64	1.42	1.13	EJ		L					n: Te						0		egio			-shi		
GLIM	Total	gas	4.99	6.52	6.35	6.76	7.27	7.79	8.45	9.45	EJ		L				-									-					
GLIM	Total	geo	0.0674	0.0907	0.117	0.132	0.145	0.161	0.130	0.136	EJ		L	2	5							<u>×</u>	2	25						1	
GLIM	Total	hydro	0.910	1.06	1.06	1.06	1.06	1.06	1.05	1.05	EJ		L						-	-								-			
GLIM	Total	hydr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	EJ		L	<u></u>									<u> </u>	20							
GLIM	Total	refin	0.139	0.0666	0.0417	0.0359	0.0341	0.0330	0.0322	0.0317	EJ		L	output (EJ)	5								output (EJ)	15	- 1						
GLIM	Total	solar	0.116	0.752	1.67	2.44	2.99	3.48	4.02	4.30	EJ	1	L	tbr		-							th I		_			6.0			
GLIM	Total	solar	0.00	0.0268	0.0871	0.159	0.169	0.208	0.237	0.287	EJ	1	L	70 1	0					-			9 ·	10							
GLIM	Total	wind	0.00	0.00	0.171	0.377	0.747	0.871	1.03	1.09	EJ		L		5									5						X	
GLIM	Total	wind	0.695	1.57	2.37	3.08	3.68	4.25	4.58	5.07	EJ		L											9							
GLIM	Total	nuclear	2.99	2.92	2.79	2.71	2.29	1.83	1.44	1.05	EJ	1	L		, .						-	-		0						× ~	
GLIM	Total	solar	0.0128	0.0628	0.160	0.277	0.390	0.535	0.758	0.927	EJ	1	L		2010	2020	2025	2030	2035	204	20.	2050			2015	2025	2030	2035	2040	2050	
GLIM	Total	biom	0.240	0.207	0.189	0.191	0.211	0.230	0.254	0.255	EJ	v			ō	6 8	5	8	5	đ	Ċ,	8			5 6	5 8	ö	3	5	5 8	

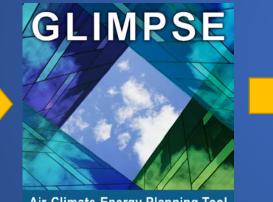
Derived from PNNL's Model Interface


Development of state-specific Marginal Abatement Curves (MACs) for NOx

Jia, F., S. Smith, A. Macpherson, D. Bielen, C. Nolte, and D. Loughlin. Using Marginal Abatement Cost Curves to Identify Optimal Control Strategies for Meeting State-level NOx Abatement Targets. 19th Annual CMAS Conference, Chapel Hill, North Carolina, October 26 - 30, 2020.

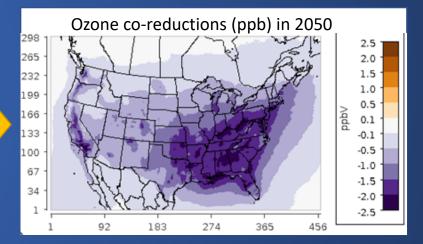
Decomposition of the MACs via the Kaya Identity to understand sectoral opportunities by state


Exploring incorporation of "upstream emissions" into holistic policy designs



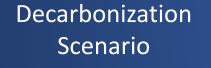
Babaee, S., Loughlin, D.H., and P.O. Kaplan (2020). Incorporating upstream emissions into electric sector nitrogen oxide reduction targets. Cleaner Engineering and Technology, https://doi.org/10.1016/j.clet.2020.100017.

Linkage of GCAM-USA to full-scale air quality models to assess air pollution and health impacts



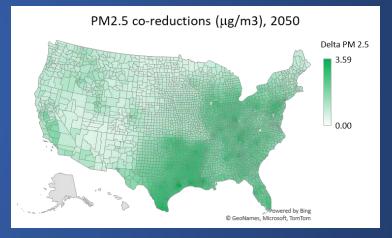
Air-Climate-Energy Planning Tool

Transport Model



* DESID is the "Detailed Emission Scaling, Isolation, and Diagnostic" module

Shankar, U., K. Brown, B. Murphy, G. Pouliot, K. Foley, D. Loughlin, and C. Nolte. Modeling the Air Quality Impacts of Future Energy Scenarios. CMAS Conference (presentation), Virtual, NC, November 01 - 05, 2021.


Linkage of GCAM-USA to reduced-form models to assess air pollution and health impacts

Air-Climate-Energy Planning Tool

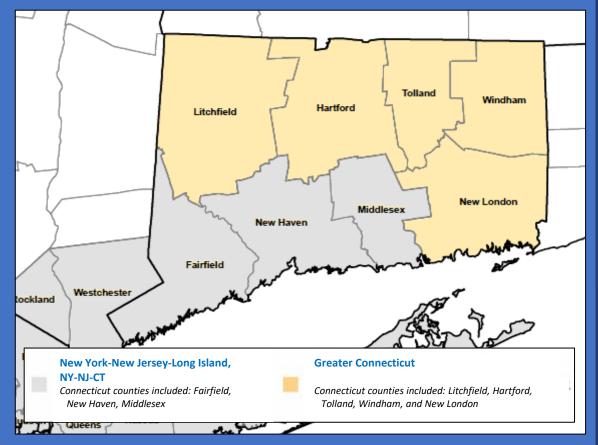
Health benefits

Dong, D. "Assessing the air quality and health impacts of decarbonization strategies in Connecticut" Masters Thesis, Rollins School of Public Health, Emory University, Atlanta, Georgia, May 2023.

Incorporation of health impact factors directly into GCAM to explore health-focused management strategies

Policy targets

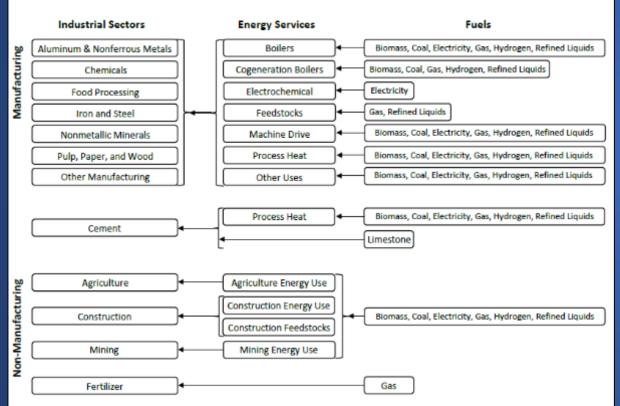
State-, pollutant-, categoryspecific health impact factors State-specific management strategies for achieving health benefits

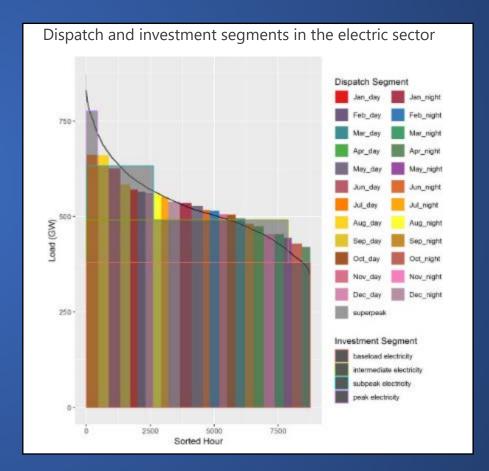

Ou Y., West, J.J., Smith, S.J., Nolte, C.G., and D.H. Loughlin (2020). Air pollution control strategies directly limiting national health damages in the US. *Nature Communications*, (2020)11:957, https://doi.org/10.1038/s41467-020-14783-2.

Multi-pollutant planning with Connecticut (CT)

- CT does not meet ozone (O₃) standards
- Most of CT ozone is attributable to emissions upwind states
- Most of these states have GHG reduction goals
- What impact may these targets have on CT O₃ attainment?

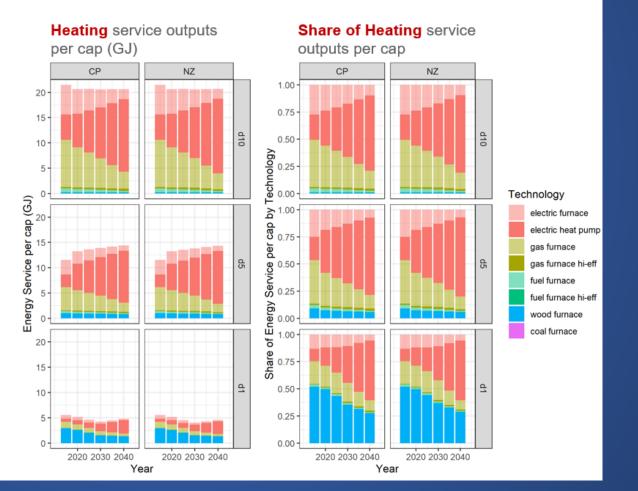
All CT counties designated in "nonattainment" of the 2015 O_3 NAAQS as of Feb. 2022


Relevant GLIMPSE project citations


- Ou, Y., Kittner, N., Smith, S.J., Babaee, S., Nolte, C.G., and D.H. Loughlin (2021). "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-earth systems model." *Applied Energy*, 300(2021), 117364. https://doi.org/10.1016/j.apenergy.2021.117364.
- Babaee, S., Loughlin, D.H., and P.O. Kaplan (2020). "Incorporating upstream emissions into electric sector nitrogen oxide reduction targets." *Cleaner Engineering and Technology*, https://doi.org/10.1016/j.clet.2020.100017.
- Xia, J., Lu, X., Wang, S., Wang, T., Ding, D., Yu, S., Shindell, D., Ou, Y., Morawska, L., Li, S., Ren, L., Zhang, Y., Loughlin, D.H., Zheng, H., Zhao, B., Liu, S., Smith, K.R. and J. Hao (2020). "The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment." PNAS, Nov., https://doi.org/10.1073/pnas.2013297117.
- Ou Y., West, J.J., Smith, S.J., Nolte, C.G., and D.H. Loughlin (2020). "Air pollution control strategies directly limiting national health damages in the US." *Nature Communications*, (2020)11:957, https://doi.org/10.1038/s41467-020-14783-2.
- Ou, Y., Smith, S.J., West, J.J., Nolte, C.G., and D.H. Loughlin (2019). "State-level drivers of future fine particulate matter mortality for the United States." *Environmental Research Letters*, 14(2019) 124071, https://doi.org/10.1088/1748-9326/ab59cb.
- Ou, Y., Shi, W., Smith, S.J., Ledna, C.M., West, J.J., Nolte, C.G., and D.H. Loughlin (2018). "Estimating environmental co-benefits of U.S. GHG reduction pathways using the GCAM-USA Integrated Assessment Model." *Applied Energy*, 216C(2018) pp. 482-493. https://doi.org/10.1016/j.apenergy.2018:02.122
- Shi, W., Ou, Y., Smith, S.J., Ledna, C., Nolte, C.G., and D.H. Loughlin (2017). "Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA." *Applied Energy*, 208(2017), pp 511-521. https://doi.org/10.1016/j.apenergy.2017.09.122.

Improvements that we expect to be available over the next year

GCAM-USA Industrial End-Use Model


On the horizon

Improvements that we expect to be available over the next year +

Residential Energy Service Outputs per cap by Technology (nested under Fuel)

- Heating service outputs per cap (left) and its share (right) by technology in Washington State, 2015-2045
- Compare across income group d10, d5, d1 under CP vs NZ

Next steps for GLIMPSE

- Public release of GLIMPSE in June of 2023
- Trainings
- Interest from states and regions
 - Climate Action Plans
 - Ozone attainment strategies
 - Coordinated planning
- Interest from universities
 - Research and teaching
- Update later this year
 - Update to GCAM-USA 6.1
 - Incorporation of Inflation Reduction Act provisions, Good Neighbor Rule, new onroad vehicle emission standards
 - Adoption of new detailed industrial sector

Thank you!

For more information, please contact: Loughlin.Dan@epa.gov