

Air quality has benefited from European emission reductions

Guus Velders

Rob Maas, Paul Ruyssenaars, Gerben Geilenkirchen (PBL), Frank de Leeuw, Norbert Ligterink (TNO), Wilco de Vries, Joost Wesseling

RIVM en Universiteit Utrecht, Netherlands

Online TFIAM meeting #49, April 21, 2020

Take home message

Since 1980, many measures have been taken in EU to improve air quality

Large avoided concentration increases of SO₂, NO₂ and PM_{2.5}

- $PM_{2.5}$ could have increased: 59 μ g/m³ (1980) \rightarrow 102 μ g/m³ (2015)
- Now about 12 μg/m³
- More than half from reductions outside the Netherlands

Health benefits for the Netherlands in 2015

- Increase in life expectancy of 6 years
- Avoided monetary health damage € 35 77 billion per year

Policy measures in Europe

Air quality limit values in Europe

- 1980: Directive on air quality limit values for SO₂, PM
- 1985: ... on air quality limit values for NO₂
- 1996: ... on ambient air quality assessment
- 1999: ... on limit values various compounds
- 2008: ... on ambient air quality and cleaner air

Emission reduction measures

- 1970: EU CO and HC emissions of motor vehicles
- 1988: CLRTAP/Sofia protocol on NO_x emissions
- 1988: EU SO₂ emissions large combustion plants
- 1991-on: EU Euro standards for emissions of cars and trucks
- 1999/2012: Gothenburg protocol: NO_x, SO₂, VOC, NH₃
- 2001: EU NEC emission ceilings directive
- 2008: IMO for sea shipping emissions NO_x and SO₂
- 2010: EU directive on industrial emissions

• ..

National air quality collaboration programme

Collaboration between

- National government
 - Background concentrations
 - Models
 - Measurements
- Local authorities: cities
 - Local inputs for models

+ Industry / livestock → SRM3

+ Highways → SRM2

+ Local streets→ SRM1

Background

Monitoring tool: Concentrations Amsterdam

Local concentrations the result from

- European emissions and measures
- National emissions and measures
- Local emisions and measures

Scenario study

Baseline scenario

Reported emissions in NL and rest of Europe

World Avoided scenario

- How the emissions could have increased without policy measures
- Emission factors (kg/activity) unchanged from 1980 on
- Growth according to growth in activity per sector

Model calculations

- OPS model → large scale concentration (1x1 km; GCN2017)
- NSL/TREDM → local traffic contributions (8.8 million addresses)

Concentrations and associated avoided health effects

→ Published: Velders et al. Atmos. Env. (2020)

Model setup

Model calculation

- Lagrangian trajectory for long-distance transport
- Gaussian plume for dispersion on local scale
- Particle contributions calculated separately
- Non-linear effects through background concentration fields

Setup World Avoided scenario

Start point are the emissions and distributions of 1980

Various drivers used to increase the 1980 emissions

- Scaling factors applied: $Emission_{year} = Emission_{1980} \times \frac{Driver_{year}}{Driver_{1980}}$
- Economic drivers from OECD, NEC/IIR, and ER/CBS (for Netherlands)
- Netherlands: about 80 sectors
- Rest of Europe: 10 SNAP sectors

Spatial distributions unchanged (i.e., current 2015 data)

Drivers for traffic

For Netherlands

- Transport in billion km driven
 - Passenger cars
 - Light duty vehicles
 - Heavy duty transport
- Large increase in transport motorways
- Very large increases light duty transport

For other countries

- Passenger transport in billion km driven
- Freight transport in billion tonne km

Drivers other sectors

Electricity production

Non-nuclear in TeraWatt hour

Households

Population

Industry

Industrial production index

Agriculture

Livestock index

Other (e.g. non-road traffic)

Gross Domestic Production

Concentrations NO_x, SO₂, PM

World avoided: increases in NO_x (and NO_2), SO_2 , PM_{10} , $PM_{2.5}$ Decreases in Baseline scenario

Good agreement with observations NO_x (and NO₂) and SO₂

Current concentrations in Asian cities: PM₁₀ over 200 µg/m³

Contributions to NO₂ concentration

Emissions of road transport are dominant

- 57% in 1980; 40% in 2015 (baseline)
- Almost half from domestic passenger cars and delivery vans

Without measures NO₂ would have increases: 30 → 45 µg/m³

- Decreased to 16 µg/m³ in baseline
- → 29 µg/m³ avoided:
- NL light traffic: 11 μg/m³
- NL industry: 5 μg/m³
- Foreign traffic: 4 μg/m³
- Largest foreign contri. from:
 UK and Belgium

Contributions to PM_{2.5} concentration

Dominant contributions from sources outside Netherlands

- 40% from domestic sources
- 27% from German sources, 20% from UK, Belgium and France combined
- Dominant sectors: industry and agriculture

Without measures PM_{2.5} would have increases: 59 → 102 µg/m³

Decreased to 12 µg/m³ in baseline

→ 90 µg/m³ avoided:

Foreign industry: 34 µg/m³

• NL industry: $15 \mu g/m^3$

• NL agriculture: 14 μg/m³

• All traffic: 13 µg/m³

Contributions to PM_{2.5} concentration

Aerosols calculated on a molar basis

Largest contributions from sulphate aerosols

- From domestic and foreign industry
- Also responsible for largest reductions and avoided contributions in 2015

Contributions from ammonium aerosols

From agriculture

Contributions traffic

- Primary aerosols
- Nitrate aerosols

Health effects of air pollution: Globally

Trends in health effects

740 000 DALYs avoided in 2015

Baseline 560 000 → 135 000 from 1980 to 2015

66 000 attributable death avoided

Baseline 50 000 → 12 000

6 years of loss of life expectancy avoided

Baseline 4 years → 1 year

€ 35-77 billion per year damage avoided

Baseline 26-58 → 6-14 billion

Contributions to avoided health effects

Domestic and foreign sources similar contributions to avoided DALYs

50% avoided DALYs attributable to industry

- Incl. refineries, electricity production
- Sulphate aerosols and SO₂ emissions
- EU directives on large combustion plants, other industry, liquid fuels

24% traffic, 19% agriculture, 4% households etc.

Health effects in 2015

Contributions attributable to various sectors, domestic and foreign

Largest road transport, agriculture, industry

Domestic sectors: 49%

Foreign sectors: 51%

Conclusions

Since 1980, air quality has improved considerably in the Netherlands

Large avoided concentration increases of SO₂, NO₂ and PM_{2.5}

- PM_{2.5} could have increased from 59 μ g/m³ (1980) \Rightarrow 102 μ g/m³ (2015) (now on average 12 μ g/m³)
- More than half from reductions abroad

Health benefits for the Netherlands in 2015

- 66 000 avoided attributable deaths per years
- Increase in life expectancy of 6 years
- Avoided monetary health damage € 35 77 billion per year

More info: Velders et al. Atmos. Env. (2020)

Questions?

Dank u wel

Thank you

Gracias

Danke

Merci

Diolch yn fawr

Спасибо

شكرا

谢谢

ę PŔФĘ

σας ευχαριστώ

תודה

terima kasih

teşekkür ederim

köszönöm

g õ m v

