TFIAM 24-26 May 2023, Utrecht

Impacts of some ammonia mitigation measures on air quality in southwest Europe

Mark R. Theobald¹, Marta García Vivanco¹, Victoria Gil¹, Juan Luis Garrido¹, Coralina Hernández², Héctor García-Gómez¹, Tania Carrasco-Molina¹, Ignacio González-Fernández¹, Rasmus Einarsson^{2,3}, Alberto Sanz-Cobeña², Eduardo Aguilera², Luis Lassaletta², Alfredo Rodríguez⁴

¹ Environment Department, CIEMAT. Madrid, Spain

² CEIGRAM/ETSIAAB. Universidad Politécnica de Madrid. Madrid, Spain

³ Swedish University of Agricultural Sciences, Uppsala, Sweden

⁴ Universidad de Castilla la Mancha

Methodology

- Annual NH₃ emissions calculated using the GRAFS-MANNER model at NUTS2 level (France, Spain and Portugal)
- Emissions calculated for a dry (2017) and wet (2018) year for a basline scenario and three abatement scenarios
- CHIMERE chemistry transport model used to calculate atmospheric concentrations and N deposition
- Risk assessment carried out for impacts to vegetation

N fluxes

MANNER (MANure Nutrient Evaluation Routine) used to calculate emissions from field-application of organic and synthetic fertilisers

Le Noë, J. (2018). Biogeochemical functioning and trajectories of French territorial agricultural systems: carbon, nitrogen and phosphorus fluxes (1852-2014) PhD Thesis, Sorbonne université

Annual NH₃ emissions (Mg/km²)

Alternative scenarios based on changes in crop management intended to lower environmental impacts from agriculture

SO Baseline scenario (situation in 2017/2018)

S1

Technical/management improvements

- Remove urea without replacement
- Shift to 100% Calcium ammonium nitrate (CAN)
- Fast incorporation of manure
- 100% drip irrigation
- Exchange green maize for alfalfa
- Efficiency improvement (synthetic fertilizer inputs can be reduced while keeping yields very similar to before)

S2

Extensification and dietary change

- Reduce synthetic N inputs by 50% (Farm to Fork)
- Mediterranean diet (-30% animal protein)

Not implemented yet (On-going work)

0.1 0.05

S3

Both extensification and efficiency improvements

- -50% synthetic N inputs
- 100% CAN
- Fast incorporation of manure
- Green maize -> alfalfa
- Mediterranean diet

Measures that reduce NH₃ emissions

NH₃ emissions calculated on the EMEP 0.1° grid

Field-application of fertilisers: GRAFS/MANNER Other sectors: EMEP

Spanish emissions (SNAP10)

Annual emissions (Mg/km²)

Air quality and deposition:

CHIMERE chemistrytransport model

- 0.1° x 0.1° (nested within a European domain at 0.2° x 0.2°)
- ECMWF IFS meteorology for 2017 and 2018
 - **Annual precipitation**

wet year

dry year

SO

NH₃ Mean Air Concentrations

25

10

0.8 cm/bri

0.1

0.05

10

0.8 cm/bn

0.1

0.05

2017 – DRY YEAR

Differences in Mean Air Concentrations

2018 – WET YEAR

PM ammonium

PM ammonium

HNO₃

75 50 25 15 8-1 -5 -15 -25 -50 -75 -100

100

HNO₃

75 50 25 -5 -15 -25 -50 -75 -100

PM nitrate

2017 – DRY YEAR

Effects on PM, SO₂ and NO₂

2018 – WET YEAR

PM2.5

S1-SO

PM10

75 50 25 15 ~ -5 -15 -25 -50 -75 -100

100

PM2.5

SO₂

50 25 15 1 % -5 -15 -25 -50 -75 -100

100

75

PM10

SO₂

50 25 15 -5 -1 -5 -15 -25 -50 -75 -10

75

S1-SO

Nitrogen deposition

Nitrogen deposition

2017 – DRY YEAR

N deposition components

2018 – WET YEAR

SO

Impact of scenarios on nitrogen deposition components

-5 -1 --1 --5 -15 -25 -25 -50 -75 -100

100

75

50

25

15 5

-15 -25

-50 -75

-100

100

75

50

25

Impact of scenarios on total N deposition

Exceedances of empirical critical loads for nitrogen

2017 – DRY YEAR

Review and revision of empirical critical loads of nitrogen for Europe Exceedance (kg N ha⁻¹ yr⁻¹) No exceedance 0 - 0.5 0.5 – 1.0 2.5 – 5 5 – 10 **II** 10 – 25

2018 – WET YEAR

Habitat Area

Minimum value of critical load range used / Ecosystem types of Europe. 1:1M. Ecosystem Type Map v3.1 (Technical paper N° 11/2018; EEA)

Areas at risk to N deposition

AgroGreen-SUDOE Visualisation Tool

https://agrogreensudoe.org/en/impact-visualizer/

Summary

- Simulations with the CHIMERE chemistry model have been used to estimate the impacts of selected NH₃ emission abatement scenarios (fertiliser application) in SW Europe
- The scenarios are estimated to reduce NH₃ and PM concentrations and increase HNO₃ and SO₂ concentrations
- The impacts of the scenarios on concentrations are slightly larger for a dry year compared with a wet one
- Although exceedances of the NH₃ critical levels (concentrations) are reduced in the scenarios, they are still expected to occur throughout SW Europe (need livestock measures)
- Total N deposition is larger for the wetter year (more wet deposition)
- The impacts of the scenarios on total N deposition is slightly larger for a dry year compared with a wet one (in relative terms)
- Even without measures for livestock (or NOx), the NH₃ emission abatement scenarios substantially reduce exceedances of critical loads in SW Europe

Funding: Interreg Ciemat UNIVERSIDAD GOBIERNO MINISTERIO POLITÉCNICA DE ESPAÑA DE CIENCIA Centro de Investigaciones Sudoe E INNOVACIÓN DE MADRID Energéticas, Medioambientales POLITÉCNICA y Tecnológicas TRANS Plan de MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO MINISTERIO GOBIERNO Recuperación, Transformación DE ESPAÑA DE CIENCIA IRE E INNOVACIÓN Financiado por la Unión Europea 1 y Resiliencia AGENCIA ESTATAL DE ceigram \odot *** Sistemas agrarios sostenibles Tecnología destinada a la sostenibilidad de los sistemas agrícolas AGRISOST

Collaboration:

https://agrogreensudoe.org/en/impact-visualizer/