

Source contributions to (future) ozone trends in Europe

Michael Schulz Hilde Fagerli, Jan Eiof Jonson, Dirk Olivié

Norwegian Meteorological Institute EMEP MSC-W

What changed from HTAP-II to HTAP-I?

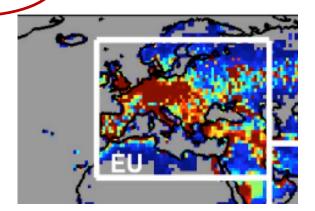
- Different emissions
- emission&met year reference changed
- receptor regions
- updated models
- changed model ensemble

FULL Comparison HTAP 1 ensemble and HTAP 2 ensemble

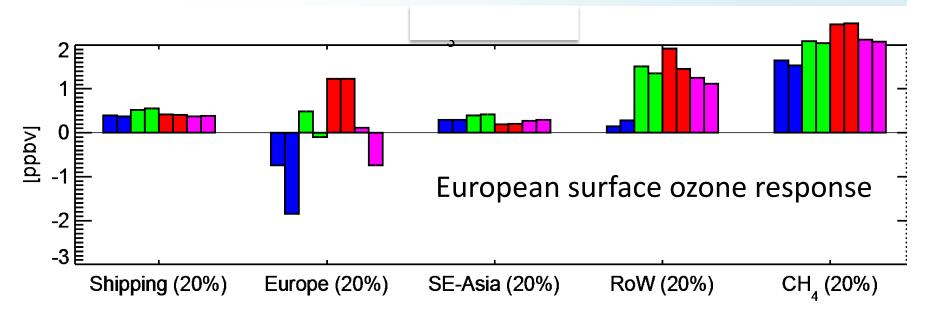
Ozone Concentration Contribution in Europe due to a 20 % reduction in anthropogenic emissions

[ppb]	from Europe	from NorthAmerica	from East Asia
HTAP 1 (box)	0.82	0.37	0.17
HTAP 2 (land only)	0.15	0.21	0.22

Why?


Change in receptor region definitions
Change in emissions (2001=>2010)
Change in source regions
Change in models contributing

Impact of receptor region change Region choice HTAP1 versus HTAP2


MODEL	RERER htap2	RERER on old htap1 Europe region
Chaser re1	0.62	0.72
Chaser t106	0.60	0.74
C-IFS v2	1.05	TBD
EMEP	0.82	0.89
OsloCTM3	0.84	TBD
CAMchem	0.90	TBD
GEOSchemADJ	0.80	0.76
Mean htap2 =>	80% ±	
Mean RAIR htap1 =>	43%	

Impact of receptor region change Region choice HTAP1 versus HTAP2

HTAP 2 source regions / NorESM model

Left bar: HTAP1 box - right bar HTAP 2 only over land DJF, MAM, JJA, SON

Receptor region definition matter little (exceptor for homebaked ozone)

Can ship emissions explain discrepancy between ozone RAIR-htap1 and RERER-htap2?

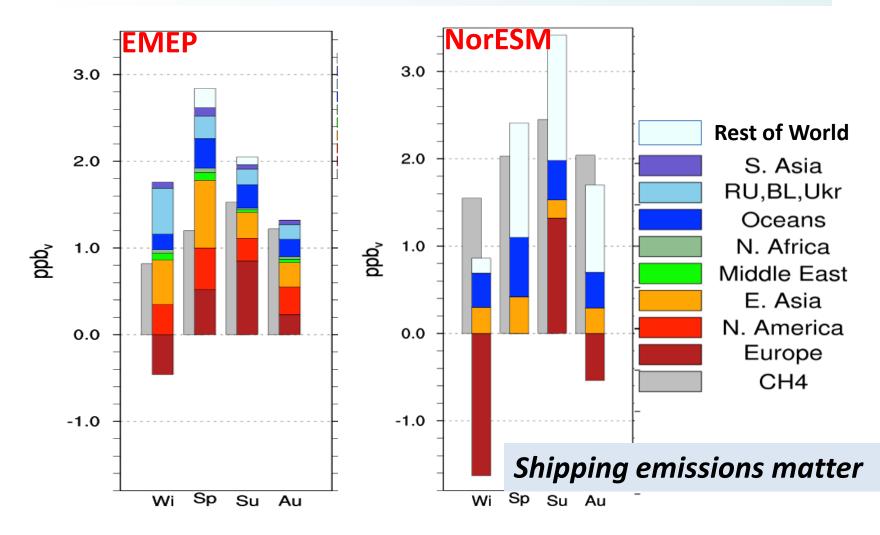
Meteorologisk institutt

EMEP **European RERER** is similar to mean RERER from all models

MODEL	RERER
Chaser re1	0.62
Chaser t106	0.60
C-IFS v2	1.05
EMEP	0.82
OsloCTM3	0.84
CAMchem	0.90
GEOSchemADJ	0.80
Mean RERER htap2 =>	80%
	Δ 40%
Mean RAIR htap1 =>	43%

Attempt to recompute EMEP htap1* "RAIR" from EMEP htap2:

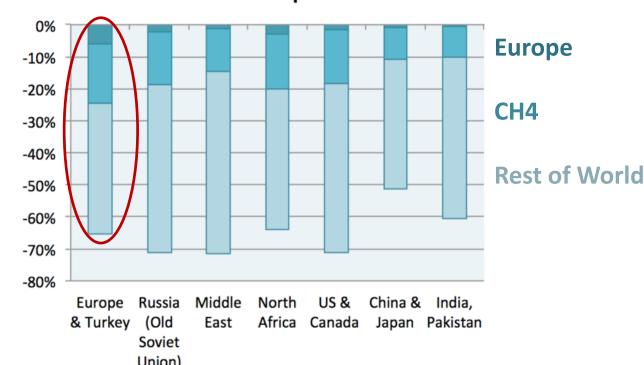
$$EU_{htap1*} = EU_{htap2} + 25\%OCN_{htap2}$$


$$GLO_{htap1*} = (NA+EU+SE+AS+50\%OCN)_{htap2}$$

$$RAIR_{EU^*} = (GLO_{htap1^*} - EU_{htap1^*}) / EU_{htap1^*}$$

CA 30% OF DISCREPANCY RAIR - RERER DUE TO DIFFERENT SHIP EMISSION INCORPORATION in HTAP1 and HTAP2

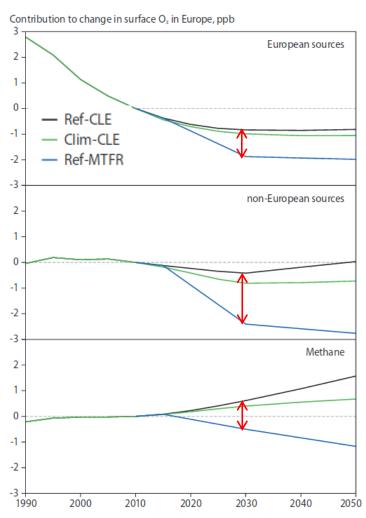
What is the role of shipping emissions to European surface ozone concentrations?



How important is CH4 mitigation vs other anthropogenic emission reductions in 2030 for European ozone (1)?

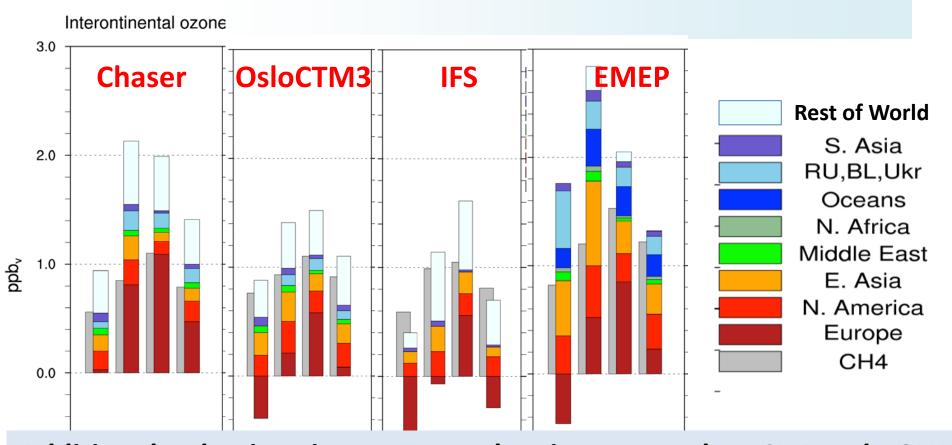
Ozone metric SOMO35 Reduction with respect to CLE scenario in 2030

Global EMEP SR runs GAINS scenarios MFR-CLE


(HTAP service contract report; Schulz, 2014)

Additional reductions in Europe are less important than CH4 and ROW

How important are CH4 vs other reductions in 2030 for European ozone (2)?


Additional reductions in Europe as important as CH4

...but different metrics, scenarios, multi-model vs. EMEP model etc.



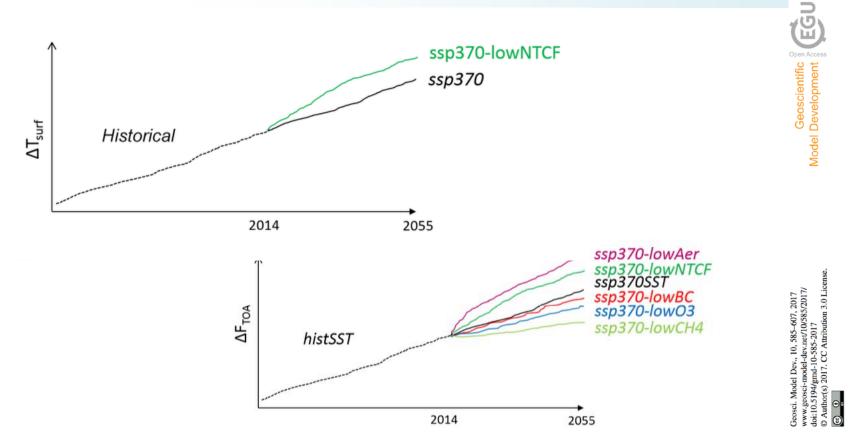
HTAP II source contributions to European Surface Ozone

due to $\Delta 20\%$ anthropogenic emissions / CH4 levels

Additional reductions in Europe are less important than CH4 and ROW

Will ozone import to Europe decrease or increase in the future?

- Factors changing the import:
 - NOy/VOC Emissions in Asia and N America
 - NOy/VOC Emissions in Europe themselves
 - Lifetime of NOy/VOC, PAN, ozone
 - CH4 emissions
 - CH4 life time
 - Circulation changes along with climate change


Will ozone import to Europe decrease or increase in the future?

Work to do....

- Parameterization work
- Review CH4 life time projections
- Emission scenarios analysis
- Indirect effects of changing European emissions
- Overview of uncertainty of factors
- Three factor problem (Climate, Europe, ROW emissions)
- Optimistically the import decreases (absolute)
- More uncertain is possibly, whether the relative import increases, less titration of O3?

Outlook testing Future AQ reductions SSP3+ - AerchemMIP/CMIP6 simulations

AerChemMIP: quantifying the effects of chemistry and aerosols in

Cooperation with ScenarioMIP, AIM model, Fujimori et al.

Summary What we still need to *quickly* sort out

- Integrate different experiments to derive "import efficiency" and uncertainty - parameterization
 - HTAP1 and HTAP 2, ECLIPSE, EMEP, individual studies
 - Scenarios and idealized x% reduction experiments
 - Which species, which feedbacks, which climates
- Ozone and CH4 lifetime in background conditions in future
- Impact of form of receptor region
- Impact on ozone fluxes, health weighting
- Seasonal variation impact on metrics

Take home messages formulating

- Shipping emissions matter! contribution to be extracted
- CH4 matters ! Uncertainty analysis ...