

Short-term ammonia measures are not effective in reducing PM episodes in Flanders

Carlijn Hendriks, Richard Kranenburg, Maria Quade, Martijn Schaap

Ammonia emissions from agriculture ...

-) ... form > 90% of total ammonia emissions in Europe
- ... contribute to particulate matter formation;
- ... are an important cause of eutrophication;
- are difficult to reduce substantially: many diffuse sources;

... are strongly dependent on meteorological variability.

Role of ammonia in PM formation (in spring)

- Ammonia reacts with sulfuric acid or nitric acid to form ammonium salts
 2 NH₃ + H₂SO₄ → (NH₄)₂SO₄ or NH₃ + HNO₃ ←→ NH₄NO₃
- Spring often sees PM episodes during fair weather
- Manure application activity is high in springtime fair weather conditions
- > Can a short-term reduction of NH₃ emissions from manure application help to prevent PM episodes in spring?
- Case study: Flanders (Belgium), agriculture-intensive region

Ammonia emissions are weather-dependent

Source (Flanders)	NH ₃ (kton)	%
Livestock housing	24.8	62
Manure application	11.2	28
Fertilizer application	4.0	10

- Emissions from livestock housing increase with temperature, especially for open housing
- Emissions from manure and fertilizer application depend on when activity takes place:
 - Start and development of the growing season
 - Conditions at day of application
- How to take this into account in air quality modelling?

A chemistry transport model sketch

Standard approach for temporal variability NH₃ emission in air quality models

- Profile for month in year and hour in day
 - The same every year
 - Independent of meteorology
 - No distinction between activities or regions

Improvement needed!

Fertilizer application and livestock housing

- Emission module of Skjøth et al. (2011), based on temperature dependence of emissions
- Normalised for each year

Manure application: use of local information

Temporal variability based on manure transport data (VLM)

naar andere landbouwers, landbouwers naar bewerkers/verwerkers, landbouwers naar afnemers buiten Vlaanderen, bew naar afnemers buiten Vlaanderen en bewerkers/verwerkers naar andere bewerkers/verwerkers] (in miljoen kg N)

What are we looking for?

- Impact of updated NH₃ emission variability on modelled NH₃ concentrations;
- Impact on modelled PM (peak) levels;
- See if scenario with reduced NH₃ emissions before/during PM episode reduces PM levels;

Impact on modelled NH₃

Observations at 2-week intervals

Main improvement: spring maximum

Measurement
Default settings
New NH₃ timing

Impact on modelled PM

No change for PM₁₀ and NH₄ for most stations

What is the contribution of Flemish NH₃ emissions to NH₃ and PM levels?

Scenarios with reduced NH₃ emissions before/during PM episode

A few simple scenarios were used to test the impact of NH₃ emission reduction from manure application:

Day 0 (start of episode)	Day -1, 0	Day -2,0	Day -3,0
	-25 %		
-50 %	-50 %	-50 %	-50 %
	- 75 %		

- > PM forecast available for 4 days ahead
- > Emissions are shifted to days before and after the episode
- In 2007, 2009 and 2011 several local PM buildup episodes occurred in spring.

Results of scenario calculations

Impact of studied scenarios on PM₁₀ levels are minor (max 3 µg/m³)

- Contribution Flemish manure application to PM₁₀ in Flanders is small (max 4 μg/m³)
- Re-emission of deposited NH₃ in NH₃ emission hotspots
- NH₃ surplus in Flanders?

Conclusions

- NH₃ modelling is much improved by using dynamic NH₃ emission variability.
- Effect on PM and SIA modelling is very small.
- Limiting emissions from manure application before and during an episode does not help a lot to reduce peak PM levels.
- More structural measures to reduce NH₃ (in both time and space) are needed to reduce PM levels.

Acknowledgements

This work was financed by the Flemish Government, Department of Environment, Nature and Energy (reference: LNE/OL201200017)

See also:

Hendriks, C., et al., 2016. Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe. Atm. Env. 131, 83-96