# Cost of inaction on air pollution — Synthesis of current knowledge

The work is financed by Klima- og Miljødepartementet, Norway

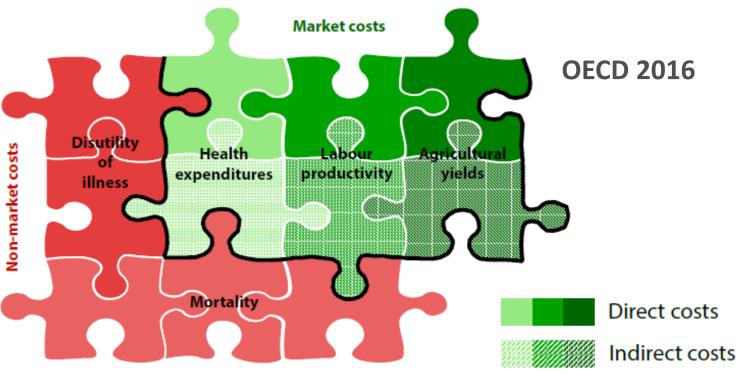
#### **TFIAM 49**

20-22 April 2020

Stefan Åström, Katarina Yaramenka (IVL), Rob Maas (RIVM)

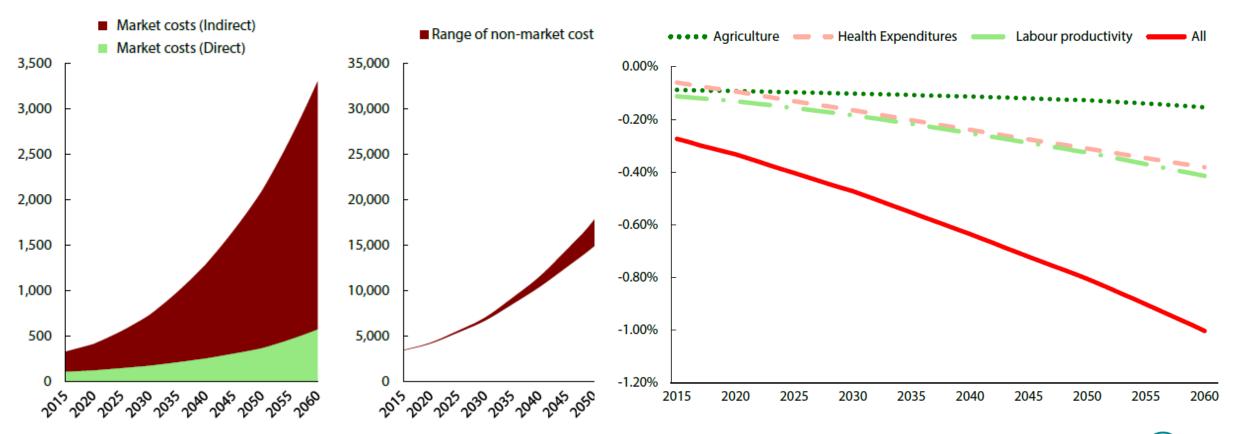





#### Policy Brief - Outline

| WHAT IS THE PROBLEM                    |                  |
|----------------------------------------|------------------|
| COSTS OF AIR POLLUTION                 |                  |
| DAMAGE COSTS                           |                  |
| Damage - total estimates               |                  |
| Damage costs of different pollutants   | Cost of Ina      |
| Damage costs of sectors and activities | Damage from      |
| Agriculture                            | Damage m         |
| Road transport                         |                  |
| Residential and commercial             |                  |
| Market costs                           |                  |
| Crop yield losses                      |                  |
| Health expenditures                    | o Disutiki       |
| Labour and productivity losses         | of               |
| Total impact on GDP                    | illnes           |
| Market vs non-market costs             | Non-market costs |
| BENEFITS OF ACTION                     | Non              |
| Avoided damage costs                   |                  |
| Control costs vs Avoided damage        |                  |

Market benefits (GDP gain)....


Cost of Inaction – what do we mean?

Damage from air pollition that can be avoided by action



#### Market costs, foregone values if no further action is taken

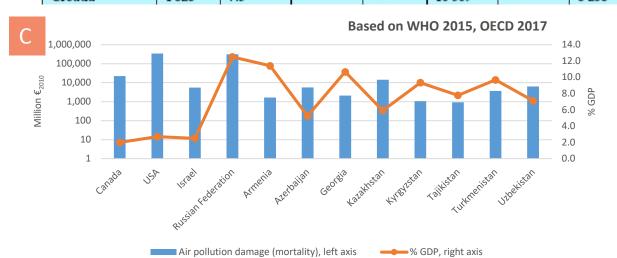
#### **OECD 2016**

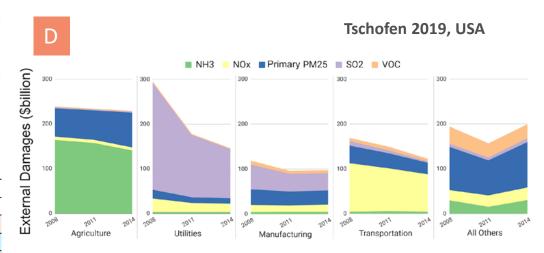


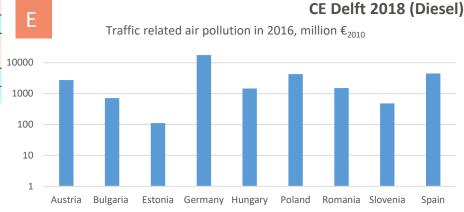


#### Estimates of current damage (mainly non-market values)

#### A Billion Euro<sub>2010</sub>


| OECD          | 2015 | 1 240      | 5.3% | Mortality                         | OECD 2017      |
|---------------|------|------------|------|-----------------------------------|----------------|
| EMEP          | 2020 | 459 / 1385 | 5.1  | Mortality, morbidity; median VOLY | IIASA 2018 CEP |
| Non-EU Balkan | 2020 | 137 / 416  | -    | / mean VSL                        |                |
| and EECCA     |      |            | Į.   |                                   | 20             |

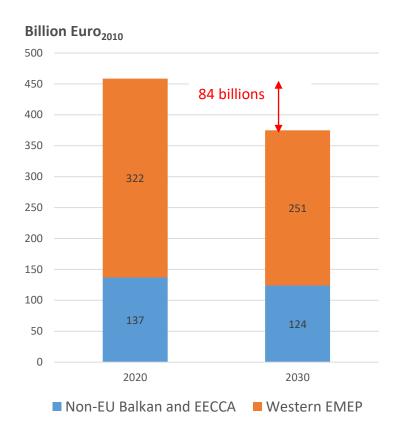

Lost working days – 1-4%

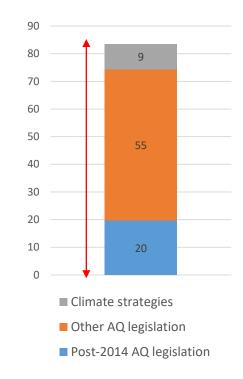

30% of the current total health damage in EMEP domain, according to IIASA 2018 (additional ARP model runs) – in the non-EU Balkan and EECCA countries.

#### Million Euro<sub>2010</sub>

| Country     | WHO 20 | HO 2015*, 2010 OECD 2017*, 2015 |        | IIASA 2018**, 2020 |        | IIASA 2018**, 2030 |        |       |
|-------------|--------|---------------------------------|--------|--------------------|--------|--------------------|--------|-------|
|             | Value  | % GDP                           | Value  | % GDP              | Value  | % GDP              | Value  | % GDP |
| Albania     | 1 279  | 6.2                             | -      | -                  | 3 491  | -                  | 3 763  | -     |
| Austria     | 8 758  | 3.3                             | 12 346 | 4.3                | 13 902 | 4.1                | 12 343 | 3.2   |
| Belarus     | 12 638 | 11.3                            | -      | -                  | 19 810 | -                  | 18 637 | -     |
| Belgium     | 15 167 | 4.6                             | 16 293 | 4.7                | 29 996 | 7.3                | 24 976 | 4.9   |
| Bosnia and  | 1 640  | 6.4                             | -      | -                  | 5 699  |                    | 5 627  |       |
| Herzegovina |        |                                 |        |                    | 100000 | -                  |        | -     |
| Bulgaria    | 12 832 | 15.4                            | -      | -                  | 21 438 | -                  | 14 674 | -     |
| Croatia     | 4 828  | 7.5                             | -      | -                  | 10 509 | -                  | 8 238  | -     |

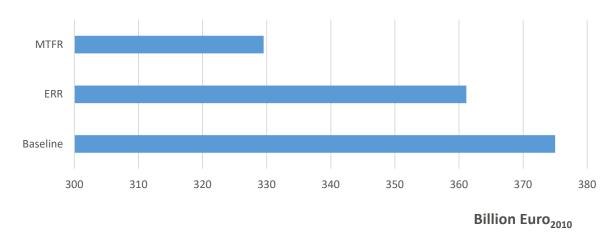


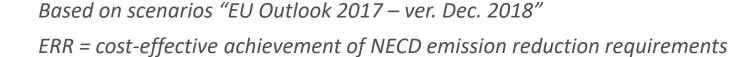



**Greenpeace 2020**: Global costs of air pollution from fossil fules are estimated at 6 billion Euro<sub>2010</sub> per day, or 3.3% of the world's GDP.

#### Benefits of action – non-market costs


#### Benefits of action in place

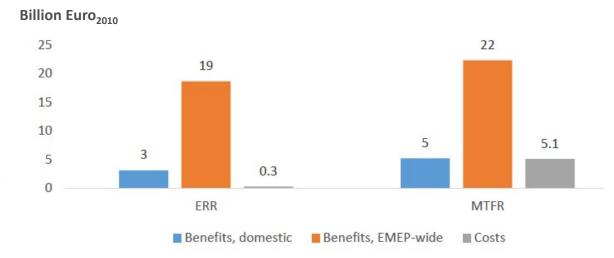





#### Potential benefits of action non-taken yet

ERR – 14 billion Euro<sub>2010</sub> potential benefit in 2030 MTFR – 45 billion Euro<sub>2010</sub> potential benefit in 2030



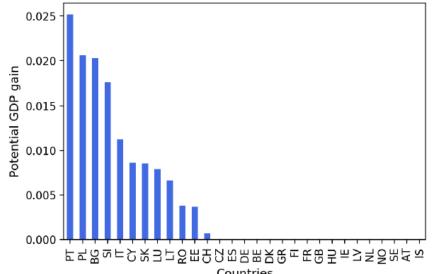


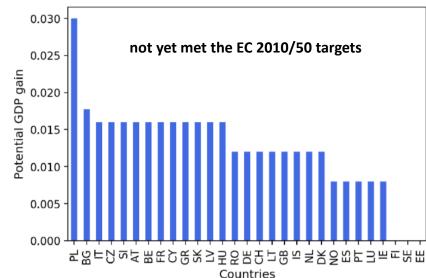



#### Benefits of action vs costs of action (CBA)

| Strategy, measure                                                                   | Benefit-to-<br>cost ratio | Source              |
|-------------------------------------------------------------------------------------|---------------------------|---------------------|
| Clean Air Act (USA)                                                                 | 31                        | USEPA 2011          |
| USEPA regulations between 2004 and 2014                                             | >4                        | OMB 2015            |
| Clean Air Policy Package: Final proposal (EU 28)                                    | 12-42                     | TSAP 11             |
| BATC compliance, steel production facilities                                        | 3.3 - 14                  | Ricardo 2018        |
| PM2.5 emissions by 25% (EU)                                                         | >200                      | OECD 2019<br>Europe |
| NEC Directive (current measures), effect in 2030 (EMEP), according to REF-scenarios | 7/26                      | IIASA 2018          |
| ERR on top of baseline, effect in 2030 (EU-28)                                      | 22 /80                    | IIASA 2018          |

### Domestic/national vs EMEP-wide perspective – example for Germany





| B/C ratio |                       | Mid VOLY | Mid VSL |  |
|-----------|-----------------------|----------|---------|--|
| ERR       | Domestic perspective  | 18       | 72      |  |
|           | EMEP-wide perspective | 61       | 445     |  |
| MTFR      | Domestic perspective  | 1.04     | 4.2     |  |
| 6         | EMEP-wide perspective | 2.9      | 18.5    |  |

#### Benefits of action – market effects (GDP gain)

#### OECD 2019 - The economic costs of air pollution: Evidence for Europe

- 1  $\mu$ g/m<sup>3</sup> increase in PM<sub>2.5</sub> concentration causes a 0.8% reduction in real GDP the same year.
- 95% of this impact is due to reductions in output per worker, which can occur through greater absenteeism at work or reduced labour productivity.
- Public policies to reduce air pollution may contribute positively to economic growth. Reaching the AQ targets for 2010-2020 would increase European GDP by 1.25% (up to 3% in the most polluted countries)
- Economic benefits from reducing emissions of PM<sub>2.5</sub> by 25% across Europe are estimated as 200 greater than corresponding abatement costs (under assumption that costs translate linearly into reductions in concentration of similar magnitude).
- !!! More stringent air quality regulations could be warranted based solely on economic grounds, even ignoring the large benefits in terms of avoided mortality.





#### Key messages (draft)

- In more than half of the UNECE countries the current monetary damage to health and ecosystems due to ambient air pollution corresponds to >5% of GDP. In 10 countries, the damage is >10% of GDP. The monetized damage is – as a percentage of GDP - in the eastern part of the UNECE region significantly higher than in the western part.
- Benefits of action: due to existing policies the monetary damage up to 2030 is expected to be reduced by ~20% (between 2020 and 2030). The expected damage reduction will (as a percentage of GDP) be higher in the western part of the UNECE-region. Labour productivity losses contribute to up to 4% of the total benefits.
- Costs of inaction: up to 12% of the monetary damage in the EMEP region in 2030 could be avoided by additional policy actions, at least 4% with reasonable costs. Especially in the eastern part of the UNECE-region there is a large potential to reduce the costs of inaction.
- The costs of taking action tend to be significantly lower than the cost of inaction.
- The 'damage cost approach' is a useful tool to assess the external costs new infrastructure or installations, but requires further development. Often these assessment tool only look at local or national damage, while transboundary damage is omitted. A comprehensive assessment would require including all external effects.



## Thank you!

katarina.yaramenka@ivl.se

