

National Institute for Public Health and the Environment (RIVM) Ministry of Health, Welfare and Sport The Netherlands

The Dutch example:

National Air Quality
Collaboration Programme
and local initiatives

Guus Velders

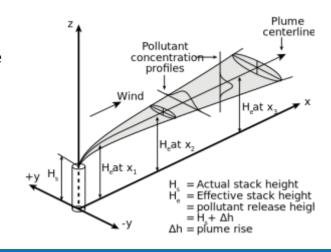
Thanks to Joost Wesseling, Margreet van Zanten

16 Februari 2017

Dutch implementation of Air Quality directive

- Air quality limit values linked to new infrastructural projects
 - Roads, factories, stables (agriculture), etc.
 - For new projects: To be guaranteed beforehand that limit values will not be exceeded (ever)
 - Reason: To make sure limit values are met (in time)

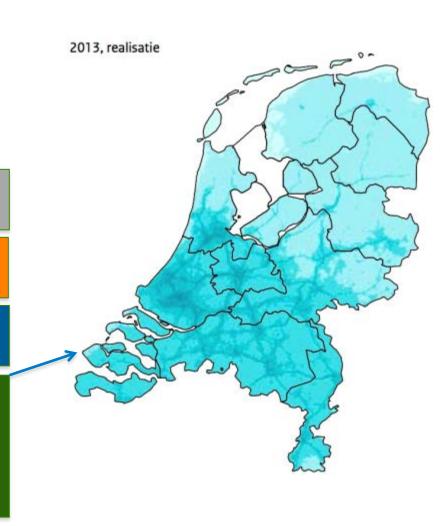
- Requirement for local models
- Model intercomparisons
- Models need to be approved for official use
- Focus on limit values, not health effects
- Limit values to be met everywhere
 - Uncertainties not considered
- National air quality collaboration programme (NSL)


National air quality collaboration programme

- Collaboration of national government and cities
- Measures to reduce concentrations (NO₂, PM)
- Monitoring tool
 - Computer program / website
 - Calculates concentrations
 - Large scale background provided (→ RIVM)
 - Standard tools for local AQ calculations
 - Effects of national and local measures
 - Keeping track of progress of infrastructural projects and measures
 - Annual report to parliament

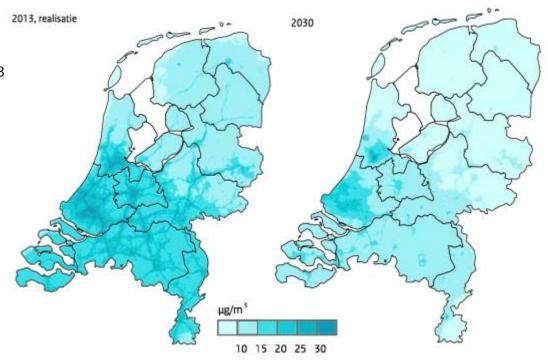
Standard Calculation Models Air Quality (SRM)

- Dutch law provides 3 Standard Calculation Models Air Quality (SRM)
 - SRM-1 for streets / street canyons in an urban environment
 - SRM-2 along highways and larger other roads
 - SRM-3 near industrial facilities
- Other models are allowed if comparable to the SRMs
- Wind tunnel experiments also allowed, provided a specific protocol is followed.
- RIVM advises the minister of Infrastructure and the Environment on model approval.


Model system

+ Industry / livestock → SRM3

+ Highways → SRM2


+ Local streets→ SRM1

Background (double counting)

Model system: Large-scale background conc.

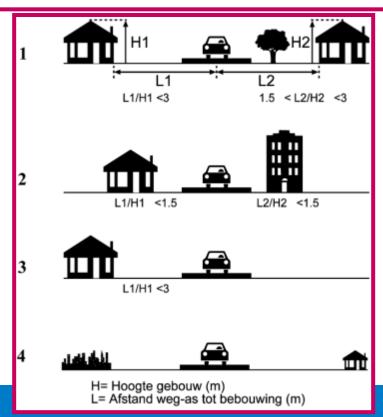
- RIVM prepares maps on a 1x1 km² resolution.
- Dispersion model
- Recent years are calibrated using measurements.
- NO₂, PM₁₀, PM_{2.5}, EC, SO₂, NH₃
- Projections based on
 - Economy
 - Technology
 - NL / FU
 - Timeframe 2017-2030
 - Source attribution

EU, national, and local policies

Policies to reduce concentrations

- EU
 - Emissions ceilings directive: NO_x, PM_{2.5}, SO₂, NH₃, VOC
 - Regulations for large combustion plants
 - Limits for the exhaust emissions of passenger cars and trucks: NO_x, PM, CO₂
- Netherlands: national
 - Additional PM₁₀ emission ceilings in industry
 - Regulations for ammonia emissions in agriculture
 - Stimulation of clean cars
 - NO_x emissions trading system
- Netherlands: cities
 - Regulating traffic flows
 - Bans on 'dirty' cars in cities: Low emission zones
 - Promotion of public transport, biking

Model system: Local streets


+ Industry / livestock → SRM3

+ Highways → SRM2

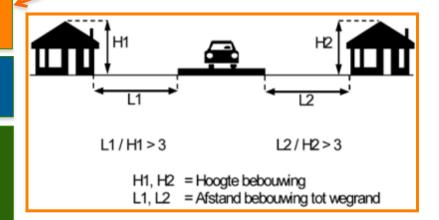
+ Local streets→ SRM1

Background (double counting)

Simple empirical model, derived from wind tunnel, calibrated using field measurements

Model system: Highways

+ Industry / livestock → SRM3

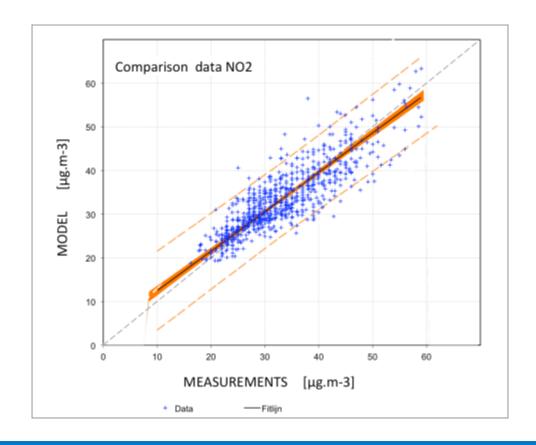

+ Highways → SRM2

+ Local streets → SRM1

Background (double counting)

Gaussian dispersion model, yearly average values only.

Calibrated using field measurements.



Extensive model validation

 Validation mainly for NO₂, some NO_x and PM₁₀

NO₂ data 2010 - 2013

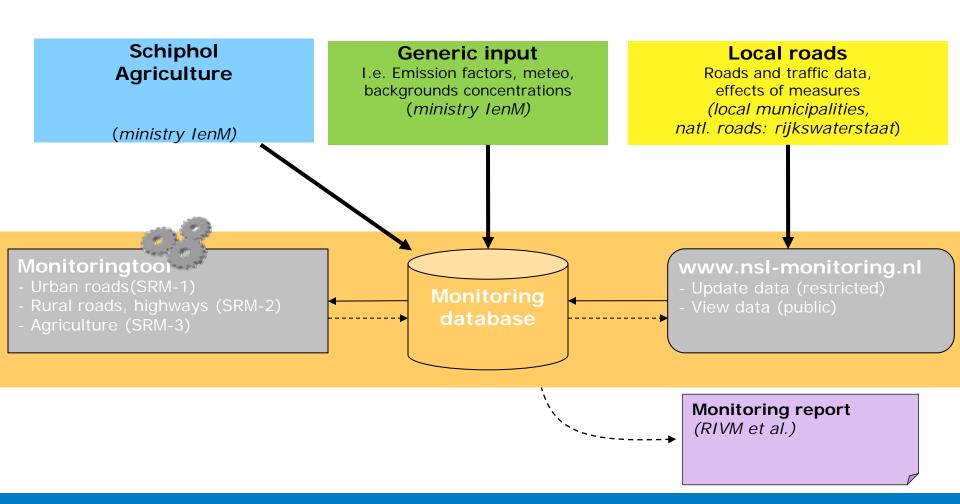
Richting/B	0.90	0.04
Offset/BI	3.5	1.2
Points	746	
F(20) / CI	21.6	0.6
F(30) / CI	30.6	0.3
F(40) / CI	39.6	0.4
F(50) / CI	48.7	0.7
diff >30%	2.8%	21
RMSE/R^2	4.1	0.73
BIAS	0.30	
MNB/ANB	0.02	0.01
MQO	0.96	0.73
>40.5	145	128

10

Model system: Industry and livestock

+ Industry / livestock → SRM3

+ Highways → SRM2


+ Local streets→ SRM1

Gaussian dispersion model, hourly and yearly average values.

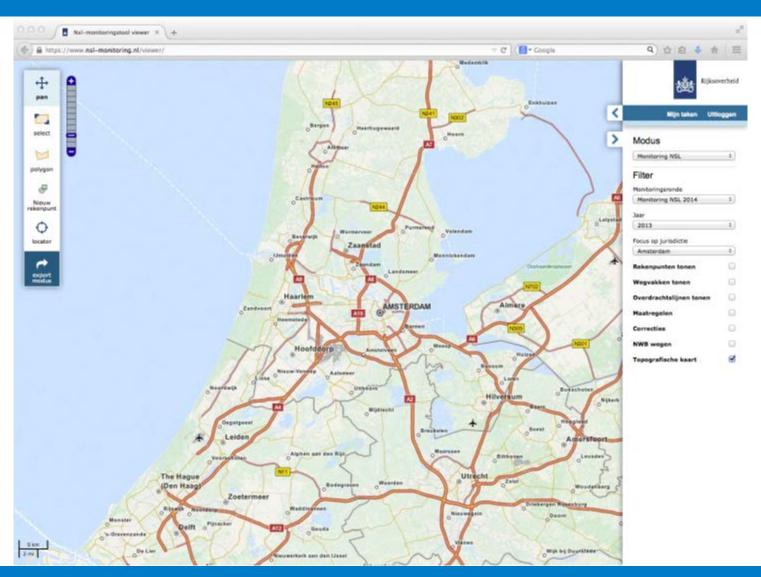
Background (double counting)

11

Monitoring NSL: data and responsibilities

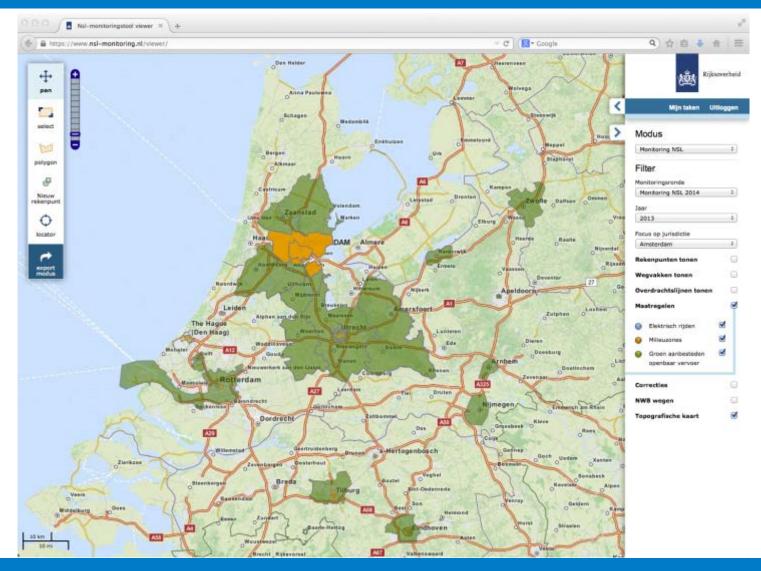
Traffic and livestock important

- For traffic the local authorities <u>must</u> provide
 - Exact location and height of the main roads
 - Numbers of light, medium-heavy, heavy vehicles, busses
 - Average speed and appropriate emission class
 - Average congestion and appropriate emission class
 - Location and shape of sound barriers

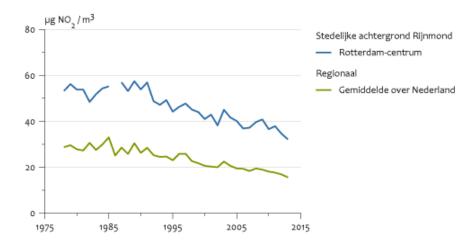


- For livestock the local authorities <u>must</u> provide
 - Numbers of animals
 - Type of housing
 - Exact location

Emission factors are provided (prescribed) by the Dutch government

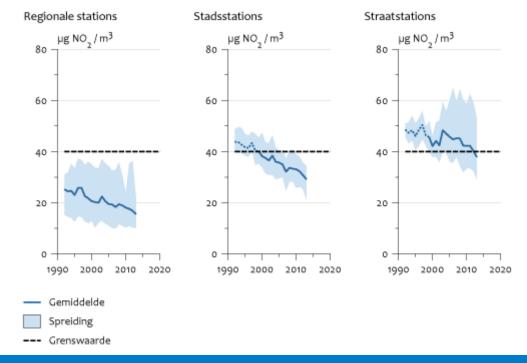

Monitoring tool

Monitoring tool: Concentrations Amsterdam

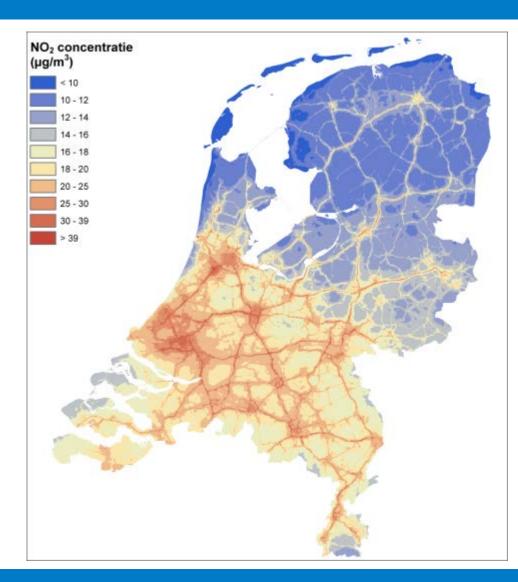


Monitoring tool: Areas with measures

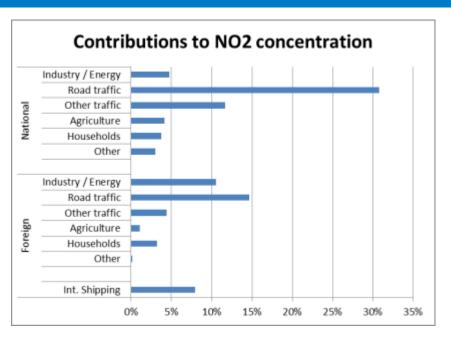
Air quality trends: NO₂

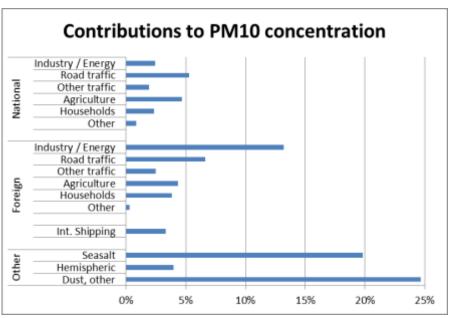

Concentratie stikstofdioxide in lucht

National network


NO₂, trend

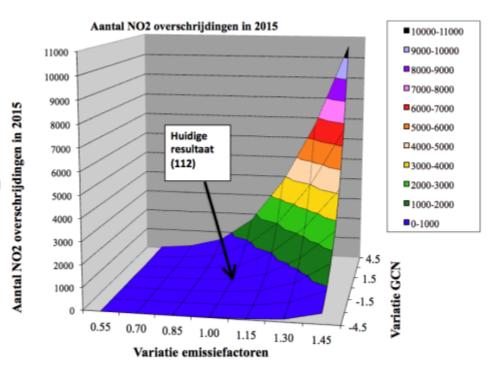
Concentratie stikstofdioxide in lucht




NO₂ concentration 2013

- Also concentration for PM₁₀, PM_{2.5}, EC
- Also projections for 2020, 2030

Analyzing contributions from different sectors



- Ex-ante or ex-post evaluations of control measures
- Input for local authorities for taking measures
- Used for cost benefit analyses
- Input for studies on health effects

Effect systematic uncertainties

- Types of uncertainties:
 - Systematic: general basis assumptions regarding backgrounds, emission factors
 - Random: uncertainties in specific individual location
- Projections have an uncertainty of 20-30%
- Many concentrations are just below limit values
- Small changes in de projections can have a significant effect on number of exceedances

More information on Dutch Air quality assessments

Websites: http://www.rivm.nl/gcn

http://www.nsl-monitoring.nl

http://www.lml.rivm.nl

http://www.rivm.nl/ops

Publications

Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv

mospheric Environment 45 (2011) 30:25-3033

Likelihood of meeting the EU limit values for NO2 and PM10 concentrations in the Netherlands

Atmospheric Environment 43 (2009) 3060-3068

Guus J.M. Velders*, Hub S.M.A. Diederen

Contents lists available at ScienceDirect

Atmospheric Environment

Atmospheric Environment 43 (2009) 3858-3866

journal homepage: www.elsevier.com/locate/atmosenv

Meteorological variability in NO2 and PM10 concentrations in the Netherlands and its relation with EU limit values

Guus J.M. Velders*, Jan Matthijsen

Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv

of NO2 limit values in the Netherlands

Guus J.M. Velders a. Gerben P. Geilenkirchen b. Ronald de Lange c

Higher than expected NOx emission from trucks may affect attainability

21

Questions?

Dank u wel Thank you Gracias Danke Merci Diolch yn fawr Спасибо شكرا 谢谢 धन्यवाद σας ευχαριστώ תודה terima kasih teşekkür ederim köszönöm நன்றி

