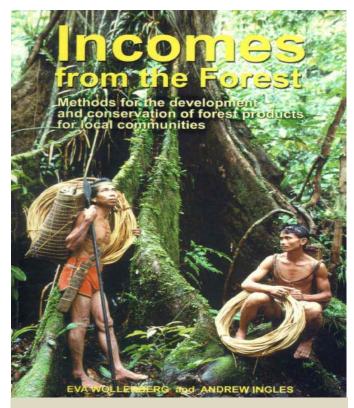


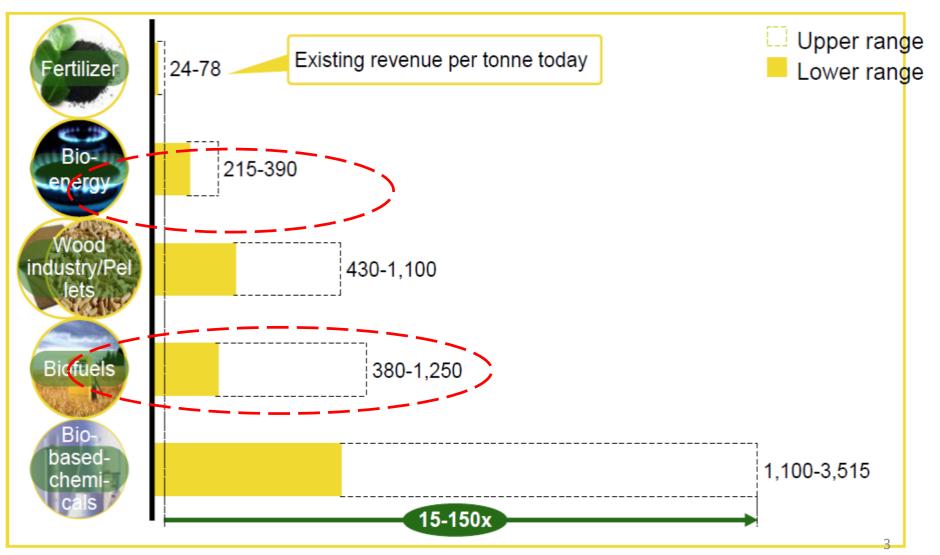
Burning Carbon to Energy to Mitigate Haze

Prof. Dr. Ir. Haslenda Hashim



1

Introduction


SLASH AND BURN??

SLASH AND EARN INCOME

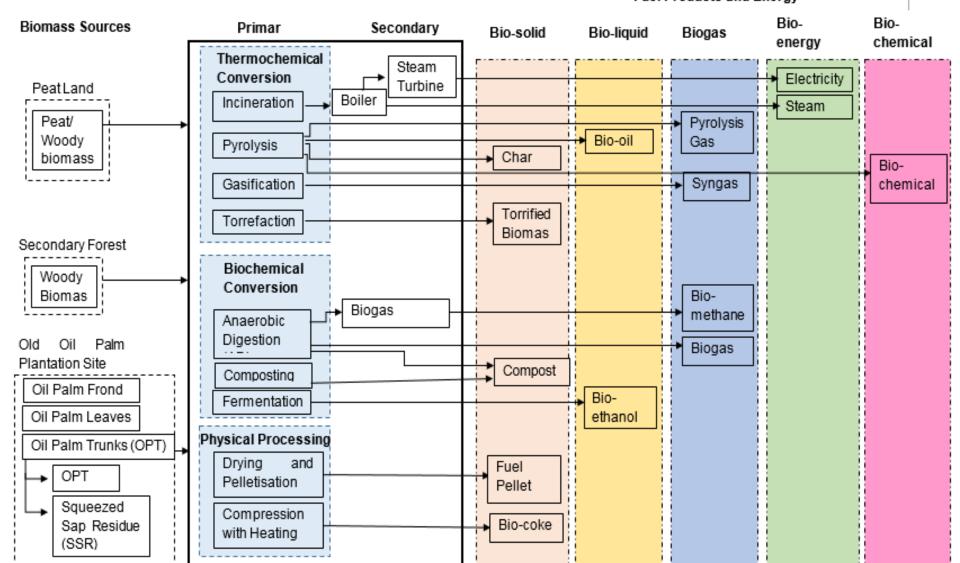
Value of Biomass

Revenue generated per tonne of lignocellulosic biomass input (dry weight) RM

Availability of Biomass

Properties of Biomass

	Forest	Oil Palm Plantation Biomass		Empty Fruit Branch			
	biomass ^a	Oil Palm Trunk ^{b, c}	Oil Palm Frond ^{d, e}	(EFB) ^{c, f}			
Proximate analysis (w	t% dry basis)						
Moisture content	n.a	8.34	16.00	4.68			
Volatile matter	n.a	79.82	83.50	76.85			
Fixed carbon	n.a	13.31	15.20	5.19			
Ash	1.70	6.87	1.30	18.07			
Ultimate analysis (wt% dry basis)							
С	48.10	40.64	44.58	46.36			
Н	5.99	5.(^		· · ·			
0	45.72	53 High cellulosics	s content — Etha	anol production			
N	n.a	2.15	0./1	2.18			
S	n.a	n.a	0.07	0.92			
Lignocellulosic content	Lignocellulosic content (wt% dry basis)						
Cellulose	45.80	45.90	50.33	57.80			
Hemicellulose	24.40	25.30	23.18	21.20			
Lignin	28.00	18.10	21.7	22.80			
HHV (MJ/kg)	15.00	17.27	17.28	20.54			


Properties of Biomass

	Forest	Oil Palm Plant	Empty Fruit Branch	
	biomass ^a	Oil Palm Trunk ^{b, c}	Oil Palm Frond ^{d, e}	(EFB) ^{c, f}
Proximate analysis (w	/t% dry basis)	_		
Moisture content	n.a	8.34	16.00	4.68
Volatile matter	n.a	79.82	83.50	76.85
Fixed carbon	n.a	13.31	15.20	5.19
Ash	1.70	6.87	1.30	18.07
Ultimate analysis (wt%	% dry basis)			
С	48.10	40.64	44.58	46.36
Н	5.99	5.09	4.53	6.44
0	45.72	52 12	<u> </u>	28 01
N	n.a	High HHV	ower Production	
S	n.a			
Lignocellulosic conten	t (wt% dry basi	is)		
Cellulose	45.80	45.90	50.33	57.80
Hemicellulose	24.40	25.30	23.18	21.20
Lignin	28.00	18.10	21.7	22.80
HHV (MJ/kg)	15.00	17.27	17.28	20.54

Biomass-to-Resource Potential Roadmap

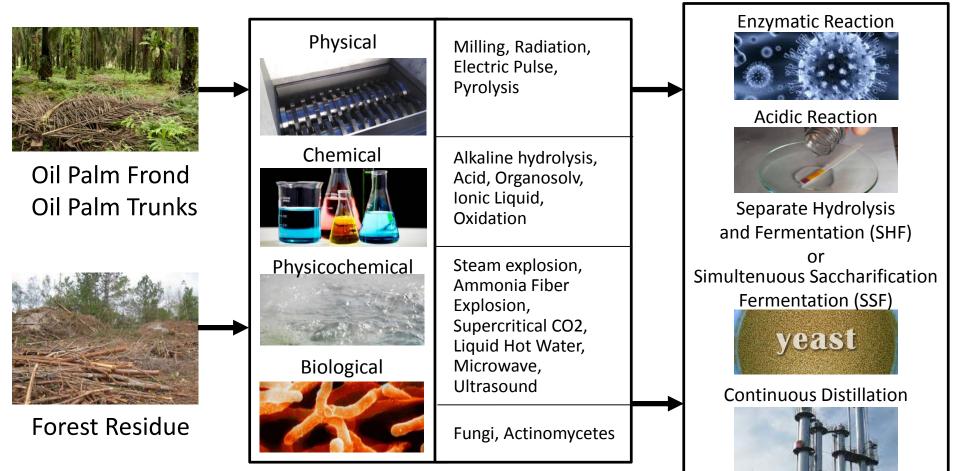
Conversion Technology

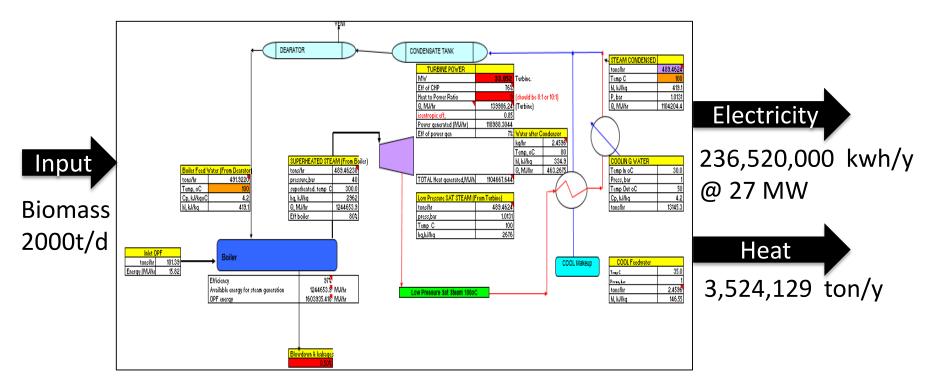
Fuel Products and Energy

Comparison of Biomass-to-Power Conversion Technologies

Technology	Direct Combustion	Gasification
Technical Aspect	Mature technology	More recent; vulnerable to explosion
	High commercial availability	Lower commercial availability
	Larger capacity (300 – 1,000MW)	Lower capacity (< 100MW)
	High thermal efficiency: 60 – 85%	Lower thermal efficiency ✓2-stage combustion ✓Need thermal input
Financial Aspect	Lower CAPEX ✓USD 1 million/ MWe	Higher CAPEX ✓USD 1.5 – 1.75 million/ MWe

*Direct Combustion is more favourable

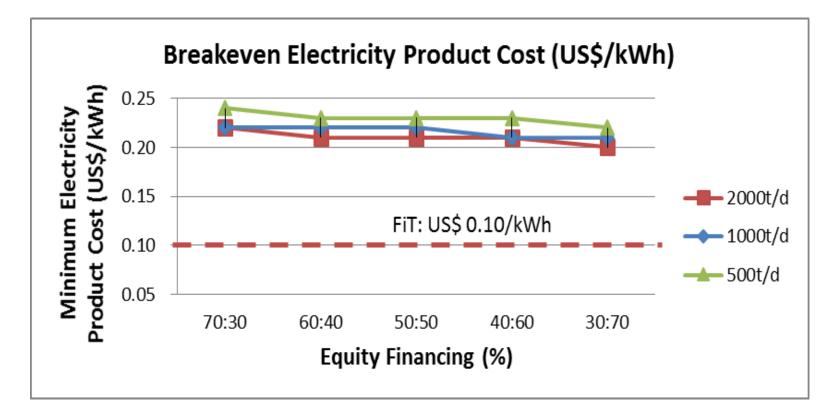

Comparison of Direct Combustion Technologies


Direct Combustion Technology	Stoker Combustion	Fluidized Bed Combustion
A) Operation		
Fuel-air mixing efficiency	Fair	High
Maintenance requirement	Low	High (corrosion problem)
B) Fuel/ feed condition		
Applicability to various fuels	Fair	High
Fuel pre-treatment	Generally not necessary	Lumps must be crushed
Tolerance to fuel moisture content	Fair	High (but not desirable)
C) Cost		
Unit Capital Cost (RM/kg steam)	1633	3379
Total Annual O&M, (RM/1,000 kg Steam) *Stoker combustion	25	29.5

Comparison of Biomass-to-Ethanol Conversion Technologies

Biomass

Pre-Treatment: Break down Cellulose to Smaller Fiber Hydrolysis - Fermentation: Conversion of Biomass to Sugars to Ethanol


- Technology
 - direct combustion with 76% efficiency
- Feedstock
 - Biomass calorific value of 15.82MJ/kg and 16% moisture content (dry basis)

Parameters	Unit Value	Total Value					
Process Information							
Plant life		30 y					
Efficiency		76%					
Feedstock	2000 ton/d	730000 ton/y					
Electricity Production		236,520,000 kw <u>h</u> /y					
heat production		3,524,129 ton/y					
Costing Information							
Feedstock cost							
Transportation costs	10 \$/ton	\$ 7,300,000					
Harvesting and collection cost	10 \$/ton	\$ 7,300,000					
Pre-processing cost	5 \$/ton	\$ 3650000					
Investment cost of boiler	900 \$/kW	\$ 24,300,000					
Investment cost turbine	1050 \$/kW	\$ 28,350,000					
Fixed capital	3000 \$/kW	\$ 81,000,000.00					
Variable cost		\$ 1,111,644.00					
Operation cost	150 \$/kW	\$ 4,050,000.00					
Electricity price	0.07 \$/kWh	\$ 16,556,400.00					
Heat price (by-product)	12.65 \$/ton	\$ 44,575,375					

- Costing information:
 - Mensilin incineration plant
- Financing information
 - NREL report

Parameters	Unit Value	Total Value				
Financing information						
Discount rate	4.1%					
Plant depreciation DB	Plant depreciation DB					
Plant recovery period		20 y				
Corporate tax rate		25%				
Loan - terms loan APR	2	5.0%				
Loan period		10 y				
Construction period		3 у				
Start-up time		3 month				
Revenues during start	t-up	50%				
Variable costs incurre	d	75%				
during start-up						
Fixed costs incurred		100%				
during start-up						
BNM Government		4.0%				
Securities Yield						

Breakeven Electricity Selling Price

- Minimum electricity price: \$0.19/kWh to \$0.23/kWh
- Current FIT: \$ 0.10/kWh.

Production cost

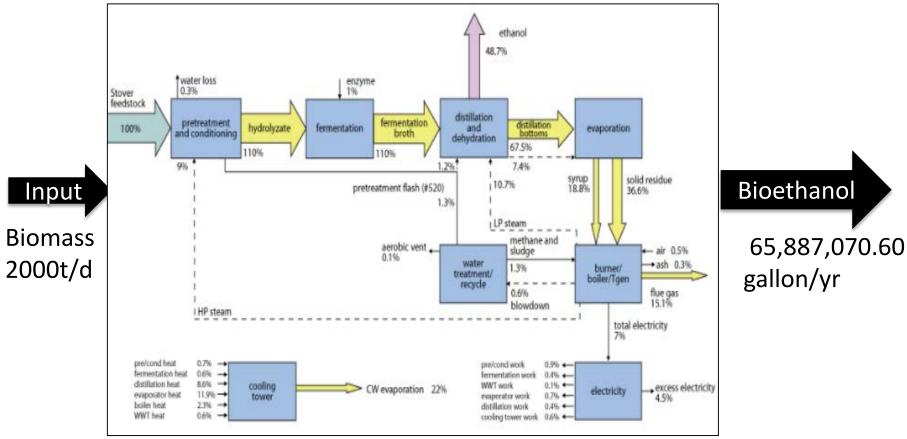
	Interest rate		
Debt:Equity ratio	8%	5%	3%
70:30	0.32	0.22	0.16*
60:40	0.30	0.21	0.16 *
50:50	0.29	0.21	0.17 *
40:60	0.27	0.21	0.17 *

* WACC =
$$\frac{E}{V}$$
 * Re + $\frac{D}{V}$ * Rd * (1 - Tc)

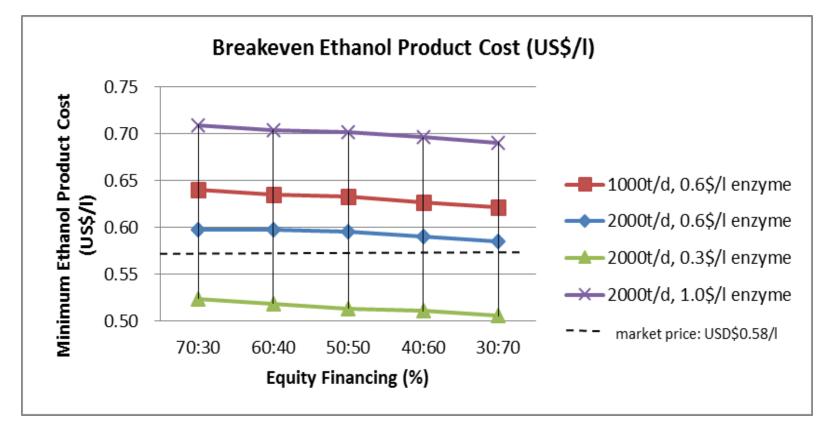
Modigliani and Miller's with-tax model: As debt becomes even cheaper (due to the tax relief on interest payments), cost of debt falls significantly from Rd to Rd(1-Tc).

• BIOENERGY FOR..

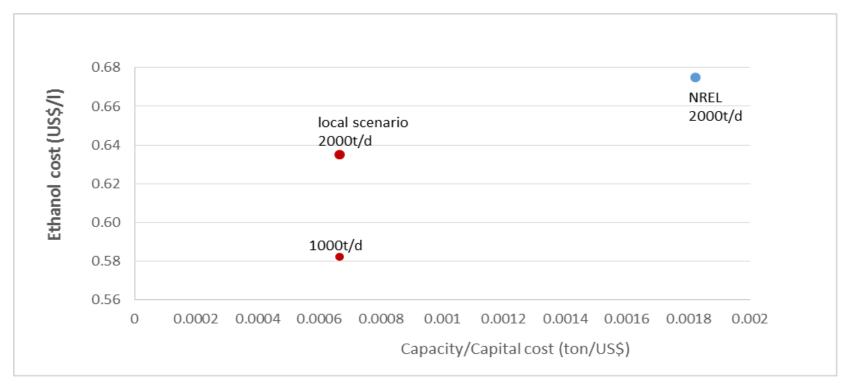
RESEARCH



INDUSTRY


EVERYONE

Owner	Name	Country	
Aarhus University	Center for Biorefining Technologies	Denmark	Info
Abengoa Bioenergy	demo	Spain	Info
Aerni Pratteln	CHP Pratteln	Switzerland	Info
AEW Energie AG	Pelletvergasser AEW Rheinfelden	Switzerland	Info
Agnion Technologies GmbH	CHP Agnion Biomasse Heizkraftwerk Pfaffenhofen	Germany	Info
AustroCel Hallein	biorefinery	Austria	Info
Autogasnord	-	Italy	Info
Azienda agricola Camardo	-	Italy	Info
Azienda Agricola Isca di Calvello	Urbas Calvello	Italy	Info
Azienda Agricola San Vittore	-	Italy	Info
Azienda Tenca dei Fratelli Zanotti/AB energy	Orzinuovi	Italy	Info
Babcock&Wilcox Volund	CHP B&W Harboore	Denmark	Info
Beta Renewables	Biochemtex	Italy	Info
Beta Renewables (joint venture of Mossi & Ghisolfi Chemtex division with TPG)	IBP - Italian Bio Fuel	Italy	Info
Bioenergie Schnellingen	Bioenergie Schnellingen	Germany	Info
BioGasol	BornBioFuel 2	Denmark	Info


- Technology: Enzymatic hydrolysis followed by fermentation
- Feedstock
 - Biomass with cellulosics content of 70%;
 - Conversion to C5 and C6 sugars of 95%;
 - Fermentation using high substrate tolerant recombinant yeast

Breakeven Ethanol Selling Price

- Ethanol price: \$0.64/l to \$ 0.62/l
- Current market price : \$ 0.58/l

Comparison between U.S and local scenario

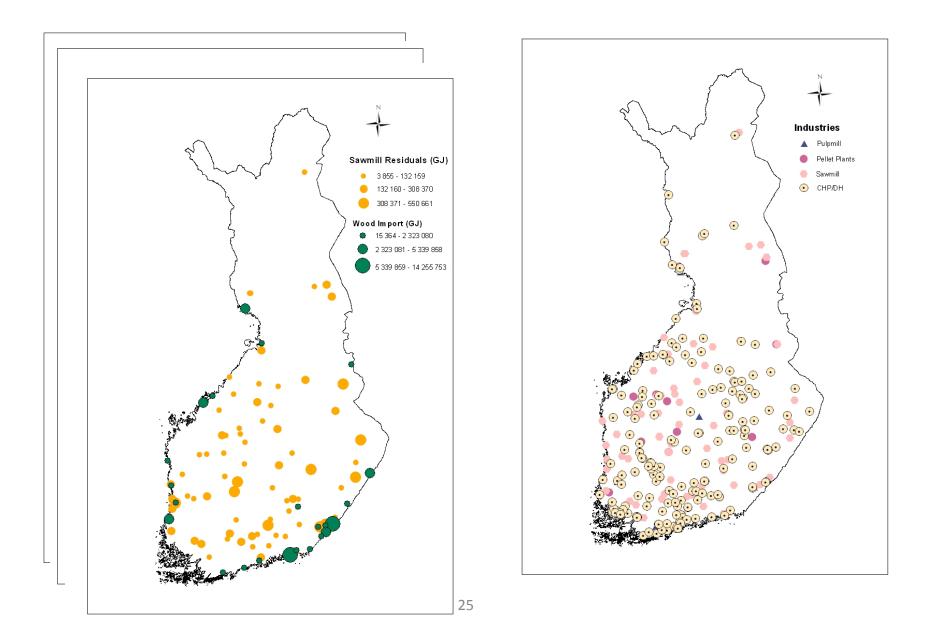
- Compared local and US scenario
- Localised scenario has lower ethanol cost

Production cost

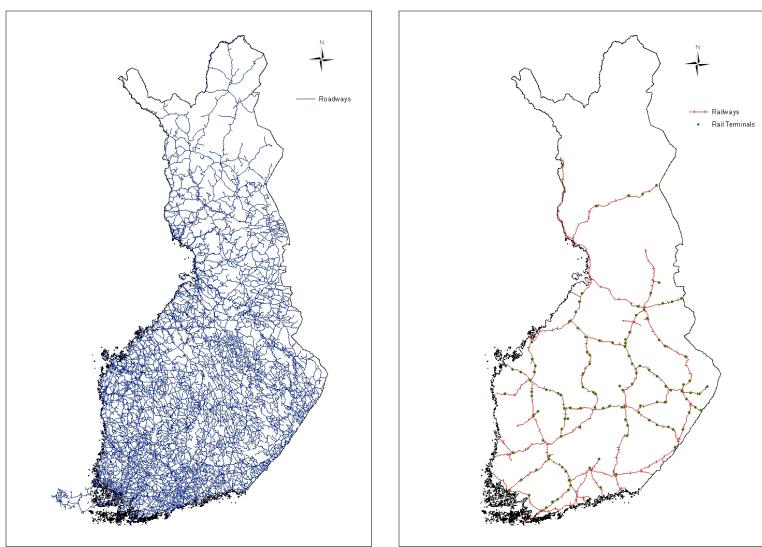
Debt:Equity ratio	Interest Rate			
	8%	5%	3%	
95:5	0.77	0.61	0.52	
70:30	0.73	0.60	0.53	
60:40	0.71 (0.57ª)	0.60	0.53	
50:50	0.69	0.60	0.54	
40:60	0.67	0.59 (0.52 ^b)	0.54	

a US NREL (2011)

b Adapted from US NREL analysis

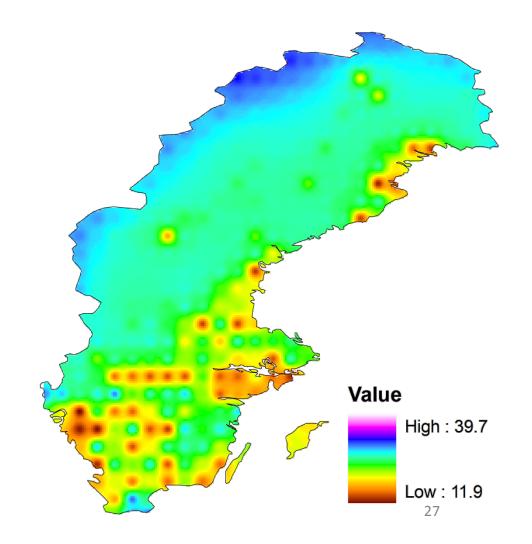

Table: Ethanol Production Cost Reduction by Improving Debt:Equity (D:E) Ratio or Interest Rate (iR) (USD/Litre)

D:E Ratio\iR	8%	5%	3%
70:30			
60:40	0.57ª		
50:50			
40:60	0.54	0.52 ^b	


^aUS NREL (2011) ^bThe retail market price: USD 0.58/litre

Ethanol (E-85) retailed at USD 2.39/gallon= USD 0.58/litre]

Spatial distribution of feedstock resources



Transport Network

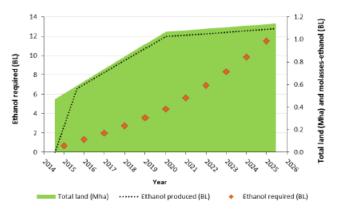
Sweden

Ethanol Production Cost (€/GJ)

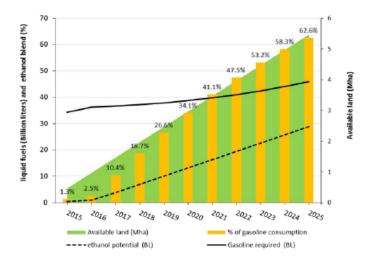
Biethanol Target in Indonesia

Estimating Bioethanol Potential and Required Land for Meeting the Targets

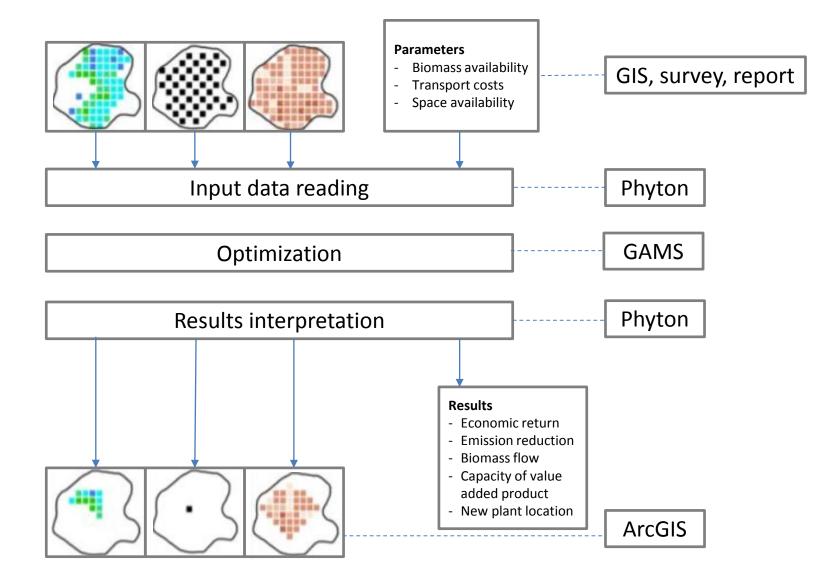
IN COOPERATION WITH:



Reference: Khatiwada, D., & Silveira, S. (2017). Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets? Energy, 119, 351–361.


Ethanol can substitute around 1% of gasoline in 2015.

- At present land use conditions, it would be difficult to meet the bioethanol and sugar self-sufficiency targets.
- 1.07 Mha sugarcane field is needed to meet the sugar demand by 2020, while ethanol can meet only 23% of the targeted bioethanol volume.
- In order to meet the sugar demand and bioethanol mandate by 2025, 2.76 Mha is required.
- 34% bioethanol blend by 2020 and 63% by 2025 can be achieved when available land (5 Mha) is used for sugarcane cultivation.



Land required for producing ethanol to meet the bioethanol blend

Particulars	2015 (2% blend)	2020 (10% blend)	2025 (20% blend)
Land required (Mha)	0.71	1.60	2.76
Molasses ethanol (BL)	0.68	1.02	1.09
Juice ethanol (BL)	-	3.42	10.39
Total ethanol (BL)	0.68	4.45	11.48

Biomass Mapping for Plant Location

Challenges for biomass-to-resources utilization

- Data & supply chain
- Investment
- Logistics Transportation network and collection
- Technology
- Social / Cultural

Policy Recommendation

Policy to ensure sustainable supply of biomass

Identifying the type, location and amount of available biomass, fixed a stable pricing of biomass

Effort to improve bio technology (increase efficiency, reducing cost)

Providing Fund for Bio-Tech improvement (R&D), provide tax exemption

Marketing biomass products

Identify suitable and marketable bio-products

Key Success Factors

- Proposed economic approach is attractive to investors
- Creation of public-private partnership
- Sustainability of materials
- Cost of logistics not prohibitive
- Availability of the best technology
- Favorable regulatory environment

Together We Mitigate Haze! *Thank you for your attention*! Thank You Terima Kasih 谢谢 धन्यवाद ありがとう

N01-322 School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor, MALAYSIA

T: +60-7-55335578 F: +60-7-5588166 E: haslenda@utm.my

