

Conceptualising Resilience in a Decisiontheoretic Context

Michael Kuhn and Stefan Wrzaczek (IIASA)

Instat Risikokonferenz

Wartburg, 03-05 May 2023

International Institute for Applied Systems Analysis (IIASA)

- Contribute to building sustainable, more resilient and fairer societies/economies
- Lead on applied systems analysis and integrated modelling
- Transform science into policy
- Build capacity to deal with global challenges
- 24 member countries
- ~400 staff (300 researchers)
- ~ 22 Mio EUR balance

Six Research Programs

- Advancing Systems Analysis
- Biodiversity and Natural Resources
- Energy, Climate, Environment
- Economic Frontiers
- Population and Just Societies
- Strategic Initiatives

Economic Frontiers

- What behavioral changes are required to achieve social and environmental transformations?
- What policies and institutional reforms are needed to bring about the required incentives?
- What impact on wellbeing across social strata, geographical scales and time?

Introduction

Background:

- Well-known measures of resilience based on eco-systems modelling (Holling 1973).
- Some socio-economic conceptualisations (Keating et al. 2014) but few decisiontheoretic formulations to date (Polasky et al. 2011, Li et al. 2017).

Objectives:

- To set out a (simple) model of renewable resource use and conceptualise resilience in a rigorous decision-theoretic way.
- To derive a model-based measure of resilience and apply it to assess resilience of resource use.

Introduction

Background:

- Well-known measures q
- Some socio-economic theoretic formulations to

Objectives:

Analogous reasoning can be applied to corporate decision-making

g 1973).

ew decision-

- To set out a (simple) model of renewable resource use and conceptualise resilience in a rigorous decision-theoretic way.
- To derive a model-based measure of resilience and apply it to assess resilience of resource use.

Model ingredients

- (Optimal) exploitation of a renewable resource subject to random shocks
- Optimal) behaviour leads to long-term sustenance of the resource stock if and only if the level of the stock is above a (Skiba-)threshold.
- Random shock may put resource stock below the threshold.
- Appropriate actions (e.g., pre-cautionary extraction) allow the decisionmaker to increase the probability of remaining above the threshold.

Resource renewal

- Economy in which consumption C(t) is harvested from a renewable resource stock $R(t) \rightarrow$ **decision**
- Resource dynamics: $\dot{R}(t) = g(R(t)) C(t)$ with $g(R(t)) = \frac{aR^2}{b+R^2}$ as replenishment \rightarrow **state**
- Shock arrives at exogenous rate η and destroys $D(\tau) = (1 \epsilon)R(\tau)$ of the stock at random time τ .
- Two stages: 1 = before shock; 2 = after shock

Resource renewal = payouts, dividends in a corporate Economy in which consumption C(t)a renewable resource context stock $R(t) \rightarrow$ **decision** $\dot{R}(t) = g(R(t)) - C(t) \quad \text{with} \quad g(R(t)) = \frac{aR^2}{h+R^2}$ dynamics: Resource as replenishment \rightarrow **state** Shock arrives at estroys $D(\tau) = (1 - \epsilon)R(\tau)$ of the stock te η and = change in at random time assets Two stages: 1 = 1= profit devaluation/loss

of assets

Convex-concave production

Convex-concave production: marginal returns

Illustrating resilience Resource stock R(t)Stage 1 resource path with consumption/harvest C_1 Long-run steady \hat{R}_1 state Threshold level *R*^{Skiba} 0 t_0 t τ Time

Illustrating resilience

Illustrating resilience: Dependence on ex-ante consumption/extraction policy R(t)Stage 1 resource path with $C'_1 > C_1$ Steady state with \hat{R}'_1 D larger consumption **Resource stock at time of shock – Damage < Threshold R**^{Skiba} Non-resilient path 0 t_0 Τ

Greater consumption of the resource leads to loss of resilience.

(For declining resource levels) a more consumption-oriented policy may be resilient to early-enough shocks. For increasing resource levels the reverse is true: time to build resilience.

Decision problem

Discounted stream of consumption utility up until (random) τ

Discounted continuation value from τ

$$\max_{C(t)} \mathbb{E}_{\tau} \left[\int_{0}^{\tau} e^{-\rho t} C(t)^{0.5} dt + e^{-\rho \tau} V(R(\tau^{+}), \tau^{+}) \right]$$

with stage-2 value:

$$V(R(\tau^+),\tau^+) \coloneqq \max_{C(t)} \int_{\tau^+}^{\infty} e^{-\rho t} C(t)^{0.5} dt$$

Discounted flow of consumption stream post-shock, i.e. from τ onward

Subject to: $\dot{R}(t) = g(R(t)) - C(t), R(0) = R_0$ $R(\tau^+) = R(\tau^-) - D(\tau) = \epsilon R(\tau^-)$

Solve the model by a method developed in Wrzaczek et al. (2020, JOTA)

Resource stock following the shock

Optimal policies in (*R*, *C*)**-space I**

Equilibrium structure:

- stage 2; and stage 1 for

 ϵ = 1, i.e. no shock
- stable/high (resilient) and unstable/low (non-resilient) equilibrium (red dots)
- Skiba threshold (blue line): Resource level at which the decision-maker is indifferent between the high and low equilibrium

Optimal policies in (*R*, *C*)**-space II**

Stage-1 anticipation of a fully destructive shock $(\epsilon = 0)$:

- shifts high equilibrium downward and low equilibrium and Skiba upward (red curve).
- Additional discounting compromises resilience

Optimal policies in (*R*, *C*)**-space III**

For $0 \le \epsilon \le 1...$

- ...intermediate outcomes with extraction policy...
- ...turning more precautionary with increasing *\varepsilon*.

A measure of resilience I

Resilience at time t given resource stock R(t) (adapted to this model)

 $\mathcal{R}(R(t),t) = \mathcal{R}_1(R(t),t) + \mathcal{R}_2(R(t),t)$

lies between 0 = no resilience and 1 = full resilience

• **Ex-ante resilience** (averting the shock): $\mathcal{R}_1(R(t), t)$:

(i) is positive only if the decision-maker follows a resilient path in the first place

(ii) increases in the expected duration of the pre-shock stage 1 (declines in the arrival rate of the shock)

• **Ex-post resilience** (dealing with the shock): $\mathcal{R}_2(R(t), t)$:

(i) increases in the arrival rate of the shock

(ii) increases with the total resilience at the time of each possible (future) shock

A measure of resilience II

• **Ex-ante resilience** (averting the shock)

$$\mathcal{R}_1(R(t),t) = \mathbb{I}_{R(t) \ge R_1^S} \frac{\mathcal{L}(t)}{\mathcal{L}(t)+1}$$

• where $\mathbb{I}_{R(t) \ge R_1^S} = 1$ Resilience if and only if the resource exceeds the Skiba-threshold R_1^S , and

 $\mathbb{I}_{R(t) < R_1^S} = 0 \quad \text{No resilience.}$

• and $\mathcal{L}(t) = \eta^{-1}$ = life-expectancy in stage 1

A measure of resilience III

Ex-post resilience (adapting to the shock)

$$\mathcal{R}_2(R(t),t) = \frac{1}{\mathcal{L}(t)+1} \int_t^\infty e^{-\eta s} \eta \mathcal{R}(s) ds$$

Increases in (i) arrival rate of shock; (ii) and in total resilience at any possible time of shock

measures resilience to future shocks at $s \in [t, \infty)$

• Value range: $\mathcal{R}_i(R(t), t) \in [0, 1]$

polar values: 1... full resilience 0... no resilience

Resilience of optimal policy

- Benchmark scenario: $R_0 = 0.2; \ \rho = 0.1; \ \eta = 0.5; \ \epsilon = 0.5$
- Resilience diminishes in discount rate ρ and arrival rate of unavoidable (!) shock η (note that this extends to stage 2 due to reduction in precaution);
- Resilience increases in initial resource stock
 R(0) and share of surviving resource stock e

What to do with this measure?

Allows to assign a resilience score to...

- given sets of policies => assessment tool.
- Scenarios of optimal decision-making => explore e.g.
 - (i) role of discount rate
 - (ii) measures of risk appetite
 - (iii) specific objective function: e.g. corporate vs. welfare oriented policy-maker
- Understand factors that enhance or hinder resilience and incentives that enhance resilience.

Conclusions

• We characterise resilience in a rigorous decision-theoretic context

(i) Elements: Random shocks and possibility of full system collapse(ii) There is an element of choice in being resilient and surviving

We provide a two-part measure of resilience

(i) Resilience and survival in present period (averting shocks)(ii) Resilience following regime change (adapting to shocks)

We provide a proof of concept within a simple model of resource extraction

Outlook I

Incorporation of additional features of resilience:

(i) endogenous hazard and mitigation,
(ii) endogenous damage (active protection),
(iii) adaptation capital etc.

 Applications of our framework and measure in richer modelling and/or empirical contexts: climate mitigation, insurance, political resilience, etc.

Outlook II

- Consider a setting with multiple risks and multiple assets
- Allow variation in impact of each type of shock depending on the type of asset
- Study portfolio allocation depending on information set e.g. about the hazard of each particular shock

Thank you

Michael Kuhn kuhn@iiasa.ac.at