Understanding Invasive Alien Species as an environmental bad: Some Environmental Governance and economic valuation Imperatives in the Philippines

Ancog, Rico

School of Environmental Science and Management, University of the Philippines Los Baños
Understanding Invasive Alien Species as an environmental bad: Some Environmental Governance and economic valuation Imperatives in the Philippines

The dynamics governing the spatial and temporal spread of invasive alien species need to be understood from the lens of institutional theory to fully understand how environmental governance mechanisms could be better wielded to formulate a management plan that is both efficient and effective. This paper clarifies the varying impact pathways of invasive alien species that would span from the physical phenomenon governing the spread over space and time, to the set of physical impacts and environmental outcomes, and down to its effects on the utility of farming communities. All these need to be systematically and comprehensively identified and quantified to sufficiently measure its true economic impact using various tools and techniques appropriate to the case of invasive alien species. This paper however noted that the issue as to whether invasive species are favorable or detrimental is highly contextual, and the ability therefore of management agencies to identify appropriate scale of governance of invasive species would be very critical.
Methods - Conceptual Framework

Introduction of invasive alien species (P. aduncum) in AVPL

Widespread P. aduncum in AVPL

AVPL with controlled count of P. aduncum

AVPL without intervention (widespread P. aduncum)

Key
Ecology/Environment
Economy
Societal consequence

Direct and indirect Impacts

- Improved Environmental indicators
- Improved Socio-economic indicators
- Improved Economic Indicators
- Existing Environmental indicators
- Existing Socio-economic indicators
- Existing Economic indicators

Actual Impacts

- Difference in environmental indicators
- Difference in socio-economic indicators
- Difference in economic indicators

Stated preference approach
Discrete choice experiment

Market-based approach
(Quantity x Market Price)

Net economic consequences of the rehabilitation program

Socio-economic/societal consequences of the rehabilitation program

Stream of economic benefits
Three diameter classes:
- 2-5cm
- 5.1-10cm
- 10 cm and above

Three 20mx20m sample plots per diameter class
Piper aduncum were counted
10 random Piper aduncum measured in terms of basal diameter (cm)
Five(5) 1mx1m per plot
Identification and counting of understory vegetation

Relative abundance and relative frequency of all the species found inside the plots were computed.
In general, the sampling sites are covered by species that are of lesser value. Most of them are growing on shifting cultivation areas and are also considered obnoxious species competing with agricultural crops.
There was a decrease in the biodiversity index as the plantation became older, indicating that indeed, P. aduncum could suppress other plant species that are shade intolerant.
Figure 2. Socio-economic Impacts

- The overall productivity per hectare was computed as the product of the productivity per hectare among farms with or without the presence of *P. aduncum* and the number of hectares with or without the presence of *P. aduncum*.

- Corn, rice, and banana were the considered crops because these are the major crops based on the survey. Among these crops, the respondents highlighted the negative impact of *P. aduncum* on corn.

- The change in productivity can be interpreted as the increase in productivity *P. aduncum* is mitigated in the farm level.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimated Value</th>
<th>Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity (without P. aduncum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Corn</td>
<td>4,133,350.50</td>
<td></td>
</tr>
<tr>
<td>• Rice</td>
<td>970,952.96</td>
<td>5,476,149.62</td>
</tr>
<tr>
<td>• Banana</td>
<td>371,846.16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,476,149.62</td>
<td></td>
</tr>
<tr>
<td>Productivity (with P. aduncum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Corn</td>
<td>2,998,786.50</td>
<td></td>
</tr>
<tr>
<td>• Rice</td>
<td>574,226.17</td>
<td>3,700,932.67</td>
</tr>
<tr>
<td>• Banana</td>
<td>127,920.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,700,932.67</td>
<td></td>
</tr>
<tr>
<td>Alternative Use Value (Charcoal, Stake Production, and Fencing Material)</td>
<td></td>
<td>36,250</td>
</tr>
<tr>
<td>Change in Productivity (Without P. aduncum – With P. aduncum)</td>
<td></td>
<td>1,738,966.95</td>
</tr>
</tbody>
</table>
The combination of the explanatory variables below gave the most significant logit regression model.

A logistic regression will be employed to the results of the survey to compute for the respondents’ WTP and to determine the significant factors that influence their WTP.

The formula to compute for the mean maximum WTP developed by Hanemann (1994) was used for the study.
Scenario 1: Low control of P. aduncum. The presence of P. aduncum must be eradicated for Barangays falling within forest reserve areas.

Scenario 2: Medium control of P. aduncum. The presence of P. aduncum must be eradicated for Barangays falling within forest reserve and civil reservation areas.

Scenario 3: High control of P. aduncum. The presence of P. aduncum must be eradicated for the whole area of AVPL.

The total net benefit under scenario 3 is at **73.8 million**. This is followed by the scenario of low impact control with projected net present value at around **66.4 million**.

The most ideal strategy to address the ongoing threat of P. aduncum as an IAS in AVPL is the implementation of eradication measures to the whole area of AVPL. With the computed positive net benefit on the long run, all scenarios can be accepted with scenario 3 as the most optimal.
Conclusion

• With the integration of the environmental, socio-cultural, and economic assessment on the impacts of P. aduncum in AVPL, the cost benefit analysis showed the potential value of preserving the biodiversity within AVPL.

• Based on the land use maps, majority of the Barangays surveyed fall into forest reserve areas. This is one of the major factors contributing to high benefit value for scenario 3 with high level of control.

• Although the alternative uses of P. aduncum was included in the computation for scenarios 1 and 2, projections on the long run showed that the cost of mitigation measures may continuously increase due to the increasing spread of P. aduncum on the long run.
The project team would like to acknowledge the following for the support and assistance they rendered in the conduct of this project:

- Department of Environment and Natural Resources – Foreign Assisted and Special Project Services (DENR – FASPS)
- Department of Environment and Natural Resources, Region 12 – Protected Area Management Board of Allah Valley Protected Landscape (PAMB-AVPL)
- Local Government Units of Sultan Kudarat
- Local Government Units of South Cotabato
- Peoples’ Organization of Lake Sebu, TBoli, Surallah, and Bagumbayan
- Ecosystem Services and Environmental Policy Laboratory, School of Environmental Science and Management
Author contact

rcancog@up.edu.ph

Rico Ancog

Keywords: Ecosystems, Invasive Alien Species, Impact Assessment